222

1

Version 04.04.1997.
Lecture transparencies

DESIGN AND

ARCHITECTURE OF

RISC PROCESSORS

FOR VLSI

Professor Veljko Milutinovi}

1997
Technical preparation by Jelena Mirkovi}
MICROPROCESSORS

Darpa eyes 100-mips GaAs chip for star wars

Palo Alto

For its Star Wars program, the Department of Defense intends to push well beyond the current limits of technol​ogy. And along with lasers and particle beams, one piece of hardware it has in mind is a microprocessor chip having as much computing power as 100 of Digital Equipment Corp.’s VAX-11/780 superminicomputers.

One candidate for the role of basic computing engine for the program, officially called the Strategic Defense Initiative [ElectronicsWeek, May 13, 1985, p. 28], is a gal​lium arsenide version of the Mips reduced-instruction-set computer (RISC) developed at Stanford University. Three teams are now working on the processor. And this month, the Defense Advanced Projects Research Agency closed the request-for-proposal (RFP) process for a 1.25-µm silicon version of the chip.

Last October, Darpa awarded three contracts for a 32-bit GaAs microprocessor and a floating-point coprocessor. One went to McDonnell Douglas Corp., another to a team formed by Texas Instruments Inc. and Control Data Corp., and the third to a team from RCA Corp. and Tektronix Inc. The three are now working on processes to get useful yields. After a year, the program will be reduced to one or two teams. Darpa’s target is to have a 10,000-gate GaAs chip by the beginning of 1988.

If it is as fast as Darpa expects, the chip will be the basic engine for the Advanced Onboard Signal Processor, one of the baseline machines for the SDI. “We went after RISC because we needed something small enough to put on GaAs,” says Sheldon Karp, principal scientist for strategic technology at Darpa. The agency had been working with the Motorola Inc. 68000 microprocessor, but Motorola would​n’t even consider trying to put the complex 68000 onto GaAs, Karp says.

A natural. The Mips chip, which was originally funded by Darpa, was a natural for GaAs. “We have only 10,000 gates to work with,” Karp notes. “And the Mips people had taken every possible step to reduce hardware requirements. There are no hardware interlocks, and only 32 instruc​tions.”

Even 10,000 gates is big for GaAs; the first phase of the work is intended to make sure that the RISC architecture can be squeezed into that size at respectable yields, Karp says.

Mips was designed by a group under John Hennessey at Stanford. Hennessey, who has worked as a consultant with Darpa on the SDI project, recently took the chip into the private sector by forming Mips Computer Systems of Mountain View, Calif. [ElectronicsWeek, April 29, 1985, p. 36]. Computer-aided-design software came from the Mayo Clinic in Rochester, Minn.

The GaAs chip
will be clocked at 200 MHz,
the silicon at 40 MHz

The silicon Mips chip will come from a two-year effort using the 1.25-µm design rules developed for the Very High Speed Integrated Circuit program. (The Darpa chip was not made part of VHSIC in order to open the RFP to contractors outside that program.)

Both the silicon and GaAs microprocessors will be full 32-bit engines sharing 90% of a common instruction core. Pascal and Air Force 1750A compilers will be targeted for the core instruction set, so that all software will be inter​changeable.

The GaAs requirement specifies a clock frequency of 200 MHz and a computation rate of 100 million instructions per second. The silicon chip will be clocked at 40 MHz.

Eventually, the silicon chip must be made radiation-hard; the GaAs chip will be intrinsically rad-hard.

Darpa will not release figures on the size of its RISC ef​fort. The silicon version is being funded through the Air Force’s Air Development Center in Rome, N.Y.

–Clifford Barney
Reprinted with permission
ElectronicsWeek/May 20, 1985
Figure 1.1.a. A brochure about the RCA’s 32‑bit and 8‑bit versions of the GaAs RISC/MIPS processor, realized as a part of the “MIPS for Star Wars” project.

Phases of a Well-Structured VLSI Design

1.
Generation of candidate architectures

with approximately the same VLSI area.

2.
Comparison of candidate architectures,

from the point of view of the compiled HLL code speed.

3.
Selection of one candidate architecture,

and finalization of its schematics.

4.
Design of the VLSI chip:

a.
Schematic capture

b.
Logic and timing testing

c.
Placement and routing

5.
Generation of the mask.

6.
Chip fabrication, etc...

Typical Development Phases for

One 32-bit Microprocessor on a VLSI Chip

(or about the development of

DARPA's 32-bit RISC MIPS processors in GaAs and silicon)

1. Announcement of project requirements

 (on 1.1.1984.)

 a. Type of the architecture (SU-MIPS)

 b. Maximal on-chip transistor count

 (30K)

 c. Detailed specification of the

 assembly language (Core-MIPS)

 d. A set of benchmark programs typical

 of the end-user application (13)

Three competitors selected by 12.13.1984.

 a. McDonell Douglas

 b. CDC + TI

 c. RCA (Purdue + TriQuint)
2. In-house research by the three competitors

 (till 12.31.1985.)

a. Generation of several candidate
architectures under 30K transistors.

b. Design of an ENDOT (isp') simulator
of all candidate architectures
(why isp'?).

c. All candidate architectures are
ranked according to the above
mentioned benchmark programs.

d. Reasons for high/low ranking of
specific candidate architectures
are analysed, and the best candidate
architectures are modified
to become better. The final
architecture is determined and
"frozen" after several iterations.

Detailed RTL design is completed,
and it is proven that
the total transistor count is below 30K.

e. 3.
 Decision-making at the sponsor side

 (by 1.1.1986.)

a. Final architectures of all competitors are ranked (using the isp' simulators and the initially provided benchmarks).

b. A subset of competitors is selected for further financing; others are offered to stay in the competition with the own financing.

c. All those that stay in competition are shown all reports generated (by others) till that point.

4. In-house development

by the three competitors (till 12.31.1986.)

a. Improvements are added, after the solutions of the competition are reviewed, and their impact is verified with isp' simulations.

b. The architecture is frozen, forever.

c. The RTL design is redone, and frozen.

d. The appropriate semi-custom standard- cell family is selected, and the gate level design is completed. The standard-cell family choices, in the project which is the subject of this presentation:

* The 1 micron E/D-MESFET GaAs

* The 1.25 micron SOS-CMOS Si

e. The completed gate level (GTL) design contains only the elements of the cells from the selected family (which includes the input, output, and input/output pads).

f. The gate level design is entered into a computer, using one of the following methods:

* Graphic entry

* HDL based entry

* Logic equation entry

* State machine entry

* Direct entry of the net-list,

using a text editor

Except in the last case, the net list (needed for further work) is obtained using the appropriate translator.

g. The net-list is tested (logic and timing), using an appopriate testing program (LOGSIM). If errors, the work iterates back, as needed.

h. The net-list is treated by an appropriate placement and routing program (MP2D). No timing errors (guaranteed) after the chip is fabricated! Logic errors possible after the chip is fabricated. The major two output files:

* Artwork file for visual analysis

(for printer or ploter)

* Fab file (for shipment to a chip

 foundary, by regular mail or email)

At the chip foundary, the tab file is analysed, and each standard cell is substituted with its full-custom equivalent (details are typically confidental).

5. Further narrowing down of the sponsored competition, and widening up of the support technology (by 1.1.1987.)

a. Only a subset of the sponsored competition is given further support for fabrication of a prototype at a lower-than-nominal speed.

b. More funding made available for R&D in both, semiconductor and packaging tehnologies.

c. More funding made available for the Core-MIPS translators (for the MC680x0 and the 1750A assembly languages) and compilers (for ADA and C).

6. Prototype fabrication (by 12.31.1987.)

7. Zero series at a still-lower-than-nominal speed (by 12.31.1988.)

8. Commercial series at the nominal speed (by 12.31.1989.)

9. The US eplogue!

10. The rest-of-the-world epilogue!

The ENDOT Package by TDT

1.
First, the appropriate files are formed.

In the most general case:

a. One or more .isp (isp') files

 (different names; same extensions)

b. One .t (topology) file

 (trivial if one .isp file; complex if many .isp files)

c. One .m (meta-micro) file

(one jumbo case statement)

d. One .i file

(information related to linking and loading)

e. One or more .b (benchmark) files

(any extension allowed)

Only this, and nothing more! [Poe66]

2. Second, the formed files are treated with appropriate tools:

a. Hardware tools

b. Software tools

c. Postprocessing and utility tools

 Finally, the simulator is completed.

3. Third, the simulator is run, and the statitics about the analysed architecture(s) are collected.

4. Fourth, if needed, a silicon compiler is run, etc...

ENDOT

(1) Hardware Tools

(1.1) ISP' Language

(1.2) ISP' Compiler - ic

(1.3) Topology Language

(1.4) Ecologist - ec

(1.5) Simulation Command Language

(1.6) Simulator - n2

(2) Software Tools

(2.1) Meta-assembler - micro

(2.2) Meta-loader - the linker/loader

(2.2.1) Interpreter - inter

 (2.2.2) Allocator - cater

(2.3.) Minor programs

 (2.3.1) mdump

 (2.3.2) merge

 (2.3.3) mas = micro + cater

 (2.3.4) mkmem

(3) Postprocesing & Utility Tools

(3.1) Statements counter - coverage

(3.2) General purpose post-processor - gpp

(3.3) N.2 help utility -nhelp

(3.4) Build utility - build

(3.5) VHDL translator - icv

THE N.2 DESIGN PROCESS

Step 1:
Idea!!!

Step 2:
Hardware (and Software) design

Step 3:
Simulation

Step 4:
Analysis

Step 5:
IF design <> ok THEN

 GOTO Step 2

Step 6:
End

With N.2 your design iterations

become painless!!!

HARDWARE TOOLS

ISP' language

Purpose:

DESCRIPTION OF THE HARDWARE SYSTEMS

ISP' program:

(1) Declaration section

(2) Behavior section
Declaration section:

- CONTAINS STRUCTURE DECLARATIONS.

- STRUCTURES: ALL ISP' NAMED OBJECTS.

- STRUCTURE TYPES:

(1) MACRO

(2) PORT

(3) STATE

(4) MEMORY

(5) FORMAT

(6) QUEUE

MACRO subsection: names which are used to give

convenient easily remembered names to objects.

PORT subsection: names which are used for

communication with outside world.

STATE subsection: internal names of the ISP' model

that can store information.

MEMORY subsection: same as a state, except that

memory can be initialized.

FORMAT subsection: convenient names for

inconvenient names; typically subranges of states.

QUEUE subsection: names which are used for

synchronization with outside world.

Behavior section:

- CONTAINS ONE OR MORE PROCESSES.

- PROCESS:

(1) PROCESS DECLARATION

(2) PROCESS BODY

- PROCESS BODY: SET OF ISP' STATEMENTS.

- ISP' STATEMENTS: PROCESS EXECUTES ALL

ITS INDEPENDENT STATEMENTS

CONCURENTLY.

- next AND delay STATEMENTS: CAN BE USED TO

FORCE SEQUENTIAL EXECUTION

WITHIN A PROCESS

EXAMPLES:

begin

vs

begin

a=b;

a=b;

b=a;

next;

end

b=a;

end
- main: OPERATES IN A COUNTINUOUS LOOP.

- when: WAITS FOR AN EVENT.

- procedure: SAME AS A SUBROUTINE IN A HLL;

main process INVOKES A procedure.

- function: SAME AS A FUNCTION IN A HLL.

Example: “wave.isp”
port
CK 'output;

main CYCLE :=

(

CK = 0;

delay(50);

CK = 1;

delay(50);

)

Figure 3.1. File wave.isp with the description of a clock generator in the ISP’ language.

File “cntr.isp”
port
CK 'input,

Q<4> 'output;

state

COUNT<4>;
when EDGE(CK:lead) :=

(

Q = COUNT + 1;

COUNT = COUNT + 1;

)

Figure 3.2. File cntr.isp with the description of clocked counter in the ISP’ language.

ic - The ISP' Compiler

Purpose:
COMPILES ".isp" SOURCE FILES

INTO ".sim" OBJECTS FILES

- input: ".isp" file

- output: ".sim" file

wave.isp ---> ic ---> wave.sim

cntr.isp ---> ic ---> cntr.sim
Topology Language

Purpose:
DESCRIBES LINKS

BETWEEN THE ".sim" FILES

Topology program:

(1) SIGNAL SECTION

(2) PROCESSOR SECTION

(3) MACRO SECTION

(4) COMPOSITE SECTION

(5) INCLUDE SECTION

- SIGNAL SECTION: IF EXISTS, CONTAINS A SET

 OF SIGNAL DECLARATIONS

- SIGNAL DECLARATIONS:

 signal_name [<width>][,signal declarations]
- PROCESSOR SECTION: CONTAINS A

PROCESSOR DECLARATION.

- PROCESSOR DECLARATION:

processor_name = "filename.sim"

[time delay = integer;]

[connections signal_connections;]

[initial memory_name = l.out;]

- MACRO SECTION: USER'S CONVENIENT NAMES

FOR TOPOLOGY OBJECTS.

- COMPOSITE SECTION: THIS SECTION

MAY CONTAIN SET OF THE

TOPOLOGY LANGUAGE DECLARATIONS

IN THE FOLLOWING FORMAT:

begin

declaration {declaration}

end

- INCLUDE SECTION: SIMPLE INCLUDING OF

THE FILE WHICH CONTAINS

TOPOLOGY LANGUAGE DECLARATIONS.
File “clcnt.t”
signal
CLOCK,

BUS<4>;

processor CLK = "wave.sim";

time delay = 10;

connections

CK = CLOCK;

processor CNT = "cntr.sim";

connections

CK = CLOCK,

Q = BUS;
Figure 3.3. File clcnt.t with the topology language description of the connection between the clock generator and the clock counter, described in the wave.isp and cntr.isp files, respectively.

ec - The Ecologist

Purpose:
COMPILES ".t" SOURCE FILES

INTO ".e00" FILES

- explicit input: ".t" file

- implicit input: ".sim" file(s)

- optional implicit input: "l.out" file

 (derived by the software tools)

-output: ".e00" file (object file)

clcnt.t ----------->

wave.sim ------->

 ec -----> clcnt.e00

cntr.sim -------->

[l.out ------------>]
n2 - The Simulator

Purpose:

SIMULATION OF THE DESCRIBED

HARDWARE SYSTEM.

- input: ".sim" & ".e00" files

- optional input: "l.out" file

(derived by the software tools)

- output: if exists, ".txt" file

wave.sim ------->

cntr.sim -------->
 n2 [-----> clcnt.txt]

clcnt.e00 ------->

[l.out ------------>]
Simulation Command Language

Purpose:

CONTROLLING THE FLOW

OF SIMULATION

Some basic simulator commands:

- run:

STARTS OR RESUMES THE SIMULATION.

- quit:

EXIT THE SIMULATOR.

- time:
QUERIES THE SIMULATION "CLOCK" TO

OBTAIN THE ELAPSED UNITS

OF SIMULATION TIME.

- examine structures: QUERIES THE CONTENTS

OF THE STRUCTURES.

- help keyword: PROVIDES AN

ON-LINE REFERENCE.

- deposite value structure: SETS THE CONTENTS

OF THE STRUCTURE WITH

THE VALUE FIELD.

- monitor structures & alert structures:

PROVIDES A VARIETY OF CAPABILITIES

FOR GETTING INFORMATION

DURING SIMULATION..
begin

SYMBOL 140 \f "Wingdings"*
create/directory [.n2]

SYMBOL 141 \f "Wingdings"
copy vl$a:[n2]nmpc.uof *.*

SYMBOL 142 \f "Wingdings"**
edit wave.isp
SYMBOL 143 \f "Wingdings"
edit cntr.isp
SYMBOL 144 \f "Wingdings"
ic wave.isp
SYMBOL 145 \f "Wingdings"
ic cntr.isp
SYMBOL 146 \f "Wingdings"
edit clcnt.t
SYMBOL 147 \f "Wingdings"
ec -h clcnt.t
SYMBOL 148 \f "Wingdings"
n2 -s clcnt.txt clcnt.e00
end
Figure 3.4. The sequence of operations that have to be executed in order to perform an ENDOT simulation, assuming that the environment is the VMS operating system, on the BUEF78 machine (VAX 11/785), at the School of Electrical Engineering, University of Belgrade, Serbia, Yugoslavia.

Installation of ENDOT package on systems

running SCO UNIX

1. Login as root

2. cd /usr

3. tar xv n2.tar.Z

(extract)
4. uncompress -v n2.tar.Z

5. tar xvf n2.tar

(extract)

6. rm n2.tar

7. cd n2

8. tar xvf nmpc.uof

9. cp nmpc.uof /usr/USERNAME

Sequence of operations for simulation of the

clocked counter

1. vi wave.isp

2. vi cntr.isp

3. ic wave.isp

4. ic cntr.isp

5. vi clcnt.t

6. ec -h clcnt.t

7. n2 -s clcnt.txt clcnt.e00
SOFTWARE TOOLS

metaMicro

Purpose: ASSEMBLING AN ASSEMBLER PROGRAM.
- input:
METAMICRO ASSEMBLER SOURCE FILE

AND ASSEMBLER PROGRAM

- output:

".n" FILE

arch.m ---------->

|

 --->

|
---> micro ---> arch.n

program.m ----->

|

- arch.m:
CONTAINS DEFINITION OF THE

ASSEMBLER INSTRUCTIONS AND

Begin-end Section:

begin

include program.m$

end

- program.m: CONTAINS ASSEMBLER PROGRAM

- arch.n: OBJECT FILE.

inter - the Interpreter

Purpose:

DESCRIPTION OF THE

INSTRUCTION WORD;

ADDRESS

RESOLUTION AND RELOCATION.

- input:

LINKER/LOADER SOURCE FILE

- output:

".a" FILE

arch.i -----> inter ------> arch.a

- arch.i:
CONTAINS DEFINITIONS OF THE

INSTRUCTION WORD AND

INFORMATION FOR THE

ADDRESS RESOLUTION AND RELOCATION.

- arch.a: OBJECT FILE.
cater - The Allocator

Purpose:

LINKING THE ".n" AND ".a" FILES;

RESOLVING ADDRESS & ALLOCATION.

- input: ".n" & ".a" files

- output: "l.out" file

- l.out:
MEMORY IMAGE FILE

arch.n --->
|

| ---> cater ---> l.out

arch.a --->
|
Postprocessing & Utility Tools

coverage -
ANALYZES PROCESSOR STATEMENTS

BY USAGE, HIGHLIGHTING THE

UNEXECUTED STATEMENTS.

gpp -

ANALYZES PROCESSOR

STRUCTURES

BY VALUE, PROVIDING STATISTICAL,

GRAPHICAL, OR COMPARATIVE

PRESENTATION OF RESULTS.

nhelp -

ON-LINE HELP.

build -

MANAGING OF THE SOURCE FILES.

icv -

TRANSLATING ISP' MODELS INTO VHDL
The Fura RISC CPU

(
Word length: 32 bits

(
Registers: sixteen 32-bit

(
Execution model: register-to-register

 dp = register_read -> ALU_operation -> register_write

(
Memory access: load & store

(
Pipelining:

delayed branching!!!

delayed loading!

(
Instruction classes:

(1) ALU class

(2) branch class

(3) data memory class

(4) system class
(
Instruction cycles:

(1) INSTRUCTION FETCH (IF)

(2) INSTRUCTION DECODING

AND EXECUTION (IDX)

(3) DATA LOAD (LD)

 A D

i-1:
IF
IDX
LD

i:

IF
IDX
LD

i+1

IF
IDX
LD

(
Possible isp' coding window positionings

(i+1 is the current instruction)
main := (

main:= (

IF(i+1);

IF(i+1);

IDX(i);

delay(1);

LD(i-1);

LD(i);

)

IDX(i+1);

)

main := (

main := (

IF(i+1);

delay(1);

IDX(i+1);

delay(1);

LD(i+1);

)

)

(

Instruction count: 24 (or 16)
(
Instruction format:

31 24
23 20
19 16
15 12
 11 0

OP
DST
SRC#1
SRC#2
X

31 24
23 20
19 16
15 5
 4 0

OP
DST
SRC#1
X
SIMM

31 24
23 20
19 16
15 0

OP
DST
SRC#1
LIMM

ALU Class:

Add

(a) ADD Rd, Rs1, Rs2

(b) ADD Rd, Rs1, imm16
(c) ADD Rd, PC, imm16

!

Substract

(a) SUB Rd, Rs1, Rs2

(b) SUB Rd, Rs1, imm16
(c) SUB Rd, PC, imm16

Move
(a) MOV Rd, Rs1

(b) MOV Rd, imm16
(c) MOV Rd, PC

Negate
(a) NEG Rd, Rs1
Logical Not

(a) LNOT Rd, Rs1
Logical And

(a) LAND Rd, Rs1, Rs2

(b) LADD Rd, Rs1, imm16
Logical Or

(a) LOR Rd, Rs1, Rs2

(b) LOR Rd, Rs1, imm1
Arithmetic Shift Left

(a) SLA Rd, Rs1, imm5

Arithmetic Shift Right

(a) SRA Rd, Rs1, imm5

Set if Equal

(a) SEQ Rd, Rs1, Rs2

Set if Greater Than

(a) SGT Rd, Rs1, Rs2

Branch Class:

Branch on True

(a) BT Rd, Rs1
Branch Always

(a) BA Rd
Data Memory Class:

- load & store instructions

(
load:

(1) three cycles: IF, IDX & LD

(2) IDX:

register_read - ALU_operation - output_latch_write (address)

(3) LD

Load

(a) SEQ Rd, Rs1, Rs2

(
store:

(1) two cycles: IF & IDX

(2) IDX:

register_read - ALU_operation - output_latch_write (data & data address)

Store

(a) ST Rd, Rs2

System instructions:

Noophalt

(a)
NOOPHALT

(

idle state of the machine; this instruction may be used

for filling slot(s) behind branches and/or loads,

or for real-time isp' programming,

or to support modular isp' programming.
Branching in pipelined machines:

Interlock mechanism:

hw (cisc-mostly) versus sw (risc-mostly)

 i

 i+1

 i+75

 Scoreboard branch: hw interlock

(clock slow-down)

(

ALU (arithmetic-logic-unit) suspend

(

RWB (register-write-unit) suspend
Delayed branch: sw interlock

source code:

i-1

ADD R7, imm32

i

JUMP R1, R2>R3

i+1

MOVE R3, R4

i+2

SUB R5, R6

after code generation:

i-1

ADD R7, imm32

i

JUMP R1+1, R2>R3

i+1

NOOP

i+2

MOVE R3, R4

i+3

SUB R5, R6

after code optimization:

i-1

i

JUMP R1+1, R2>R3

i+1

ADD R7, imm32

i+2

MOVE R3, R4

i+3

SUB R5, R6

condition: THE MOVED INSTRUCTION

(a)
MUST BE EXECUTED (no matter if the

branch is taken or not), AND

(b)
HAS CONDITION AND/OR

THE JUMP TARGET ADDRESS.

parameters:

(a)
PIPELINE FILL-IN DEPTH

(which is not the pipeline depth minus one!)

(b)
BRANCHING-RELATED STATISTICS

(branches executed versus branches taken)

(c)
BRANCH FILL-IN FUNCTION

(local versus global code optimization)

(d)
CLOCK SLOW DOWN FUNCTION

(in-the-critical-path versus off-the-critical-path)

(e)
TECHNOLOGY-RELATED STATISTICS

(on-chip versus off-chip delays)

(f)
CACHE IMPACT (hit versus miss penalty)

NUMERICAL EXAMPLE:

What is the equation for the condition that

hw and sw interlock have the same

benchmark execution time (not clock-count)

Loading in pipelined machines:

Interlock mechanism: hw versus sw

 i
IF
IDX
LD

 i+1

IF
IDX

Scoreboard LOAD:

(

Syspend

(

Bypass

Delayed LOAD: sw interlock

source code:

i-1

MOVE R3,R4

i

LOAD R7, memory

i+1

ADD R2, R1, R7

after code generation:

i-1

MOVE R3,R4

i

LOAD R7, memory

i+1

NOOP

i+2

ADD R2, R1, R7

after code optimization:

i-1

i

LOAD R7, memory

i+1

MOVE R3,R4

i+2

ADD R2, R1, R7

condition:

mutual independence

parameters:

technology related,

design + organization + architecture related,

system software related,

and application related.

numerical example:

What is the equation ... ?

 CURRENT WINDOW

 (((((

IF
IDX
LD

IF
IDX
LD

IF
IDX
LD

(((
(((

 (((((((((

 MAIN

DELAY(1)
END

 IR=MEMRY[PASTPC]

 PASTPC=PC

 PC=PC+1

 PASTOP=OP

PC=REG[DST]

The ".isp" file:

- Macro section

macro

WORD
= 32&,

BYTE
= 8&,

NIBBLE
=
4&

;

- State section

state

reg[0:15]<WORD>,

pc<WORD>,

pastpc<WORD>,

ir<WORD>,

pastop<WORD>,

!

pastdst<NIBBLE>,

pastval<WORD>,

hist[0:23]<WORD>

!

;

- Memory section

memory

memry[0:0xfff]<WORD>

;

- Format section

format

op

=

ir<31:24>,

dst

=

ir<23:20>,

src1

=

ir<19:16>,

src2

=

ir<15:12>,

imm16
=

ir<15:0>,

imm5

=

ir<4:0>

;

- Main Program

main := (

pastop = op;

pastpc = pc;

pc = pc + 1;

ir = memry[pastpc];

hist[pastop] = hist[opastop] + 1;

delay(1);

if pastop eql 21

reg[pastdst] = pastval;

case op

0:reg[dst] = reg[src1] + reg[src2]

instructions 1 to 20

21: (
pastdst = dst;

pastval = memry[reg[src2]])

22:
memry[reg[src2]] = reg[dst]

23:

esac;

)

Where is the ISP' code to describe delayed branching and delayed loading?
Where are the two taken care of?
The complete "case":

! Instruction decode and execution is done here. The "case" statement performs

! the decode - note that the opcode bits are tested as one would expect.

! For each legal opcode, a unique action is specified.

! Only one action is performed, the the bottom of the "main" process is reached,

! and we return to the top of the process.

case op

 0:
reg[dst] = reg[src1] + reg[src2]
! add (reg-reg)

 1:
reg[dst] = reg[src1] + imm16 sxt 32
! add (reg-imm)

 2:
reg[dst] = pc + imm16 sxt 32
! add (pc-imm)
!!

 3:
reg[dst] = reg[src1] - reg[src2]
! sub (reg-reg)

 4:
reg[dst] = reg[src1] - imm16 sxt 32
! sub (reg-imm)

 5:
reg[dst] = pc - imm16 sxt 32
! sub (pc-imm)

 6:
reg[dst] = reg[src1]
! mov (reg-reg)

 7:
reg[dst] = imm16 sxt 32
! mov (reg-imm)

 8:
reg[dst] = pc
! mov (pc-imm)

 9:
reg[dst] = - reg[src1]
! negate

10:
reg[dst] = reg[src1] and reg[src2]
! and (reg-reg)

11:
reg[dst] = reg[src1] and imm16 sxt 32
! and (reg-imm)

12:
reg[dst] = reg[src1] or reg[src2]
! or (reg-reg)

13:
reg[dst] = reg[src1] or imm16 sxt 32
! or (reg-imm)

14:
reg[dst] = not reg[src1]
! not

15:
reg[dst] = reg[src1] *:arith (imm5 ext 32)
! shift left
!!

16:
reg[dst] = reg[src1] /:arith (imm5 ext 32)
! shift right
!!

17:
if reg[src1] eql reg[src2]
! set if equal

 reg[dst] = - 1

 else reg[dst] = 0

18:
if reg[src1] gtr reg[src2]
! set if greater

 reg[dst] = - 1

 else reg[dst] = 0

19:
if reg[src1] eql -1
! branch on true

 pc = reg[dst]

20:
pc = reg[dst]
! branch always

21:
(pastdst = dst;
! load

 pastval = memry[reg[src2]]

)

22:
memry[reg[src2]] = reg[dst]
! store

23:
;

esac;

The ".m" file:
- Instr Section

instr

I<32>$

- Format Section

format

op = I<32:24>,

dst = I<23:20>,

src1 = I<19:16>,

src2 = I<15:12>,

imm16 = I<15:12>,

imm5 = I<4:0>$

- Macro section

macro

r0 = 0&,

r1 = 1&,

...

r15 = 15&,

addr(d,s1,s2) =
op=0; dst=d;

src1=s1; src2=s2$&,

 instructions 1 to 22

noophalt = op=23$&$

- Begin-end section

begin

include ee666.test$

end
The ".i" file:
- Instr Section

instr

I<32>$

- Format Section

format

op = I<32:24>,

dst = I<23:20>,

src1 = I<19:16>,

src2 = I<15:12>,

imm16 = I<15:0>,

imm5 = I<4:0>$

- Space section

space

<0:4095>$

- Transfer section

transfer

{new}

- Mode section

mode

case op eql 7

imm16~address$

break$

esac,

default:

imm16~imm16$

break$

esac$

The ".t" file

processor cpu = "ee666.sim";

time delay = 100ns;

initial memry = l.out;
The ".b" file:

Sample assembler language program that uses the instructions

for the RISC-like processor of the ee666 (Advanced Computer Systems),

Purdue University, Spring Semester 1987.

Filename: eee666.test

movi(r0,100)

subri(r1,10,100)

movr(r2,r1)

seq(r3,r1,r2)

movi(r4,11)

movi(r5,12)

moci(r6,13)

bt(r4,r3)

ba(r5)

movi(r1,10)

11:
addri(r1,r1,1)

addri(r1,r1,1)

12:
sgt(r7,r2,r1)

bt(r6,r7)

addr(r8,r0,r2)

subri(r9,r1,10)

st(r9,r8)

ba(r5)

addri(r2,r2,2)

13:
subri(r8,r8,2)

ld(r8,r8)

movr(r10,r8)

addrr(r10,r10,r8)

sla(r10,r10,2)

halt
Sample Fura RISC VMS Session:

1.

set def [.N2]

2.

copy VL$A:[N2.E666]*.* *.*

3.

@VL$A:[N2]login

4.

n2 -script.txt ee666.e00
If you want to test your own CPU:

1.

@VL$A:[N2]login

2.

edit cpuname.isp

3. ic cpuname.isp

4.

edit cpuname.m

5.

edit program.m

6.

micro cpuname.m

7.

edit cpuname.i

8.

inter cpuname.i

9.

cater cpuname.a cpuname.n
 10.

edit cpuname.t
 11.

ec -b cpuname.t
 12.

n2 -s script.txt cpuname.e00
Papers from the Open Literature:

1)
Rose, C.W., Ordy, G. M., Drongowski, P. J.,

"N.mpc: A Study in University-Industry Technology Transfer"

IEEE Design & Test of Computers, February 1984, pp 44-56.

2)

Rose, C. W., "System Design Tools - A Paradigm Shift,"

Endot Corporation Internal Report, 1986.

3)

Gay, F., "Funcitonal Simulation Fuels System Design,"

VLSI Design Technology

4)

Kong, S., Wood, D., Gibson, G., Katz, R., Patterson, D.,

"Design Methodology of a VLSI Multiprocessor Workstation,"

VLSI Systems, February 1987.

5)
Bozanic, D., Fura, D., Milutinovic, V., "Simulation of a Simple

RISC Processor," Application Note, No. D#001/VM,

TD Technologies, Cleveland Heights, Ohio, U.S.A., 1993.

6)
Petkovic, Z., Milutinovic, V., "Simulation of the Intel i860 RISC

Processor," Application Note, No. D#003/VM, TD Technologies,

Cleveland Heights, Ohio, U.S.A., 1994.

7)

Milicev, D., Petkovic, Z., Milutinovic, V., "Simulation Study of

Uniprocessor Cache Memories," Application Note,

No. D#004/VM, TD Technologies,

Cleveland Heights, Ohio, U.S.A., 1994.

8)
Tomasevic, M., Milutinovic, V., "Using N.2 in a Simulation

Study of Snoopy Cache Coherence Protocols for Shared Memory

Multiprocessor System," Application Note, No. D#002/VM,

TD Technologies, Cleveland Heights, Ohio, U.S.A., 1993.

WORKLOAD CHARACTERIZATION

Important Reference:

Ferrari, D., Computer Systems Performance Evaluation, Prentice-Hall, Englewood

Cliffs, New Jersey, U.S.A., 1978.

Introduction:

Workload of a computer system has been defined as the set of all inputs (programs, data, commands, etc...) that the system receives from its environment

In measurement experiments, the system is driven by a model of the workload which is just a sample of the real production workload.

The major question is how representative this sample is. Other important characteristics of a workload are:

a) simplicity of construction,

b) usage cost,

c) reproducibility,

d) compactness, and

e) system independence.

Types of Workload Models:

1. Natural workload model: A sample job stream taken from a production workload, and used to drive the system at the very time it was produced.

2. Artificial workload model: All other cases.

2a. Non executable:

Defined via statistical distributions of relevant parameters.

Usage: In analytical studies.

Typical forms: Probabilities of various instructions

(instruction mixes), memory accesses,

procedure nesting depths, etc...

Relevant issues: Mean values, variances, correlations,

autocorrelations, etc...

Standard instruction mixes: Flynn (MLL), Knuth (HLL), etc...

2b.
Executable:

Defined via one or more programs.

Usage: In empirical studies.

Typical forms: Synthetic jobs (parametric programs) and

benchmarks (semantic programs).

Relevant issues: application orientation, etc...

Standard ones: See the PC magazines, etc...

Synthetic job approaches:

Buchhulz (fixed flowchart with variable parameters)

Kernigham + Hamilton (similar but more sophisticated)

Archibald + Baer (the most widely cited

computer architecture paper in 80's)

Benchmark types:

Extracted

Created

Standard (application dependent)
The DARPA/Stanford benchmarks:

The DARPA/Stanford Benchmark Package

consists of thirteen PASCAL programs:

1) ackp.p

2) bubblesortp.p

3) fftp.p

4) fibp.p

5) intmmp.p

6) permp.p

7) puzzlep.p

8) eightqueenp.p

9) quickp.p

10) realmmp.p

11) sievep.p

12) towresp.p

13) treep.p

These programs are located on ed machine,
and the full path name of their directory is:
/a/mips/bench
(

(

i-1:	 leaves PASTPC,

 		PASTOP (part of PASTIR)

i: 		 leaves PC,

 		 		OP (part of IR)

i+1:	 after IF,

		 		puts PC+1 into PC;

		 after IDX (when branch),

	� EMBED Equation.2 ���	 		puts REG[dst] into PC;

� EMBED Equation.2 ���

IR

DST�
. . .�
SRC�
�

PASTDST�
�

� EMBED Equation.2 ���

� EMBED Equation.2 ���

� EMBED Equation.2 ���

� EMBED Equation.2 ���

(

(

		 IF OP=21

			PASTDST=DST;

			PASTVAL=MEMRY[REG[SRC]]

		 }

		 IF PASTOP=21

			REG[PASTDST]=PASTVAL

 						CURRENT WINDOW

 � EMBED Equation.2 ���

�
�
�
�
�
�
�
IF�
IDX�
LD�
�
�
i-1:�
�
�
IF�
IDX�
LD�
�
i:�
�
�
�
IF�
IDX�
LD�
i+1:�
�
�
�
�
(((

(((�
�
�
�
				 		(((((((((

			 		

MAIN		DELAY(1)	END

(

REG

(

MEMRY

PASTVAL

* The first two steps are exectuted only once.

** The remaining steps are executed once for every working session.

_922905955.unknown

_922906576.unknown

_922905421.unknown

_922905639.unknown

_922904681.unknown

_922905402.unknown

_922876117.unknown

