Heterogeneous Processing:
Concepts and Systems

Ilija Ekmečić, Igor Tartalja, and Veljko Milutinović

Department of Computer Engineering
School of Electrical Engineering
University of Belgrade

� EMBED CDraw4 ���

Fax: +381 (country) - 11 (city) - 762 - 215
Email: {eekmecic,etartalj,emilutiv}@ubbg.etf.bg.ac.yu
@Copyright 1995
� EMBED Word.Picture.6 ���
Preface

Throughout the history of computers, application demands were setting the pace for the development of new architectures. As a result of requirements imposed by different applications, various types of computers were constructed. In order to enhance performance, users learned to exploit parallelism as well. However, that was not enough, because applications with diverse computational needs efficiently use only a small fraction of machine's capabilities. For example, suppose an application with one vector part, one scalar part, one part that exhibits the SIMD-type parallelism, and one part that exhibits the MIMD-type parallelism. Let us also suppose that the application is to be executed on an available vector machine. Under these conditions, it could be expected that vector portion will be executed rapidly, while the other portions will need substantially more time. Instead of architectures that provide top performance on small portions of code, one needs the systems that yield acceptable performance throughout the entire application. This can be achieved by combining fundamentally different architectures into well orchestrated systems, so that every code portion can be executed on the most suitable machine. Such systems are called heterogeneous processing systems.

This tutorial is planned to be equally useful to a wider class of readers, ranging from senior undergraduate students all the way to experienced researchers in the field of heterogeneous processing. The tutorial will be kept at around 300 pages, in order to make it more compact and easier to comprehend. Editors combine their decade long expertise in heterogeneous processing ([MILUT85]) with practical experience in design for distributed computing ([GRUJI94]) to create a balanced and educational coverage of this newly emerging subject.

The first chapter in the tutorial is of introductory nature, and contains two survey papers. The rest of the tutorial is organized into two parts: Concepts and Systems. The concepts part covers all the activities that need to be performed in order to implement heterogeneous processing. These activities are predominantly sequential, and will be referred to as phases. The Systems part of the book deals with some of the existing systems. Both hardware and software issues are considered. At the end, a list of papers for further reading will be supplied.

The Concepts part of the book contains the material on the activities which have to be performed in order to achieve heterogeneous processing. Parallelism detection is the first crucial activity that has to be performed. After its completion, units of computation, which can run in parallel, are extracted. These units are referred to as code blocks. This phase is performed in the same fashion as in homogeneous systems, so it was decided not to cover it in this tutorial. However, a list of references is suggested to help the reader to master this phase as well (this list will be given in the final text of the tutorial, not in this proposal). The next phase is parallelism type characterization. After this phase, execution times for every block on all the architectures should be estimated. This material is covered in the second chapter. The obtained execution times are used in the following phase, during which the hardware is selected for execution of the partitioned task. The objective of hardware selection is to minimize the overall task execution time with respect to some fixed constraint. Selection theories and schemes are presented in the third chapter. After the hardware is selected, code blocks have to be matched with the machines, and the load on similar machines has to be balanced. This is the responsibility of the matching-allocation phase. Matching depends on the size of data, so it can be performed not just at compile time, but at run time as well. Our fourth chapter contains the material on this topic. Only methods that contain characteristic issues for heterogeneous processing will be presented in this chapter.

The Systems part of the book is based on a classification which includes two categories: mixed-mode computing (fine grained or instruction-level heterogeneity) and metacomputing (also known as coarse grained or block-level heterogeneity) [KHOKH93]. Suites of well orchestrated loosely coupled heterogeneous machines are suitable for metacomputing, but not for mixed-mode computing, because of the communication costs. Tightly coupled machines that exhibit heterogeneous modes of computation can successfully deal with the mixed-mode computing. Some of these machines are shown in Chapter Five. In Chapter Six, we discuss loosely coupled systems, developed so far. These systems include message passing systems and distributed shared memory systems. The concept of associative heterogeneous processing in loosely-coupled systems is also covered. Chapter Seven covers system software and the orchestration tools issues. These issues should include programming paradigms, intermediate representation forms, object orientation support, etc. Chapter Eight gives several papers about applications which require heterogeneous processing.

Naturally, it was hard to draw a clear border between the chapters. Some of the papers fit equally well in more than one chapter. For example, the second paper in Chapter Two ([PEASE91]) can be placed in Chapter Seven as well, because it actually presents one fully operational system which evaluates performance of parallel programs on various machines. In Chapter Seven, there is a paper ([GHAFO93]) that combines very well with it ([PEASE91]). One can argue that only one of these two papers should be included in the tutorial, but the second paper is broader, so we thought that both of them have an important role. Paper [CHEN93] presents the HOST selection theory and one mapping (allocation) methodology, so it can be placed in Chapter Four as well as in Chapter Three. It should be pointed out that the border between Chapter Six and Chapter Seven at this stage should be viewed as a fluid one.
�Table of Contents

Chapter 1 - Introductory Readings

A Survey of Heterogeneous Processing Concepts and Systems
	Ekmečić, I., Tartalja, I., Milutinović, V. M. (originally developed for this tutorial, 1994).

Heterogeneous Computing: Challenges and Opportunities
	Khokhar, A. A., Prasanna, V. K., Shaaban, M. E., Wang, C.-L. (IEEE Computer, Vol. 26, No. 6, June 1993., pp. 18-27).

PART ONE - HETEROGENEOUS PROCESSING CONCEPTS

Chapter 2 - Parallelism Type Characterization

PAWS: A Performance Evaluation Tool for Parallel Computing Systems
	Pease, D., Ghafoor, A., Ahmad, I., Andrews, D. L., Foudil-Bey, K., Karpinski, T. E., Mikki, M. A., Zerrouki, M. (IEEE Computer, Vol. 24, No. 1, January 1991, pp. 18-29).

Instruction Execution Trade-Offs for SIMD vs. MIMD vs. Mixed-Mode Parallelism
	Berg, T., Siegel, H. J. (Proceedings of the 5th International Parallel Processing Symposium, IEEE CS Press, Los Alamitos, California, USA, Order No. 2167, May 1991, pp. 301-308).

A Framework for Compile-Time Selection of Parallel Modes in an SIMD/SPMD Heterogeneous Environment
	Watson, D. W., Siegel, H. J., Antonio, J. K., Nichols, M. A., Atallah, M. J. (Proceedings of the Workshop on Heterogeneous Processing, Newport Beach, California, USA, April 1993, pp. 57-64).

Chapter 3 - Hardware Theories & Schemes

Optimal Selection Theory for Superconcurrency
	Freund, R. F. (Supercomputing, November 1989).

Augmenting the Optimal Selection Theory
	Wang, M., Kim, S., Nichols, M., Freund, R., Siegel, H. J., Nation, W. G. (Proceedings of the Workshop on Heterogeneous Processing, Beverly Hills, California, USA, March 1992, pp. 13-22).

A Selection Theory and Methodology for Heterogeneous Supercomputing
	Chen, S., Eshagian, M. M., Khokhar, A., Shaaban, M. E. (Proceedings of the Workshop on Heterogeneous Processing, Newport Beach, California, USA, April 1993, pp. 15-22).

Partitioning Problems in Heterogeneous Computer Systems
	Iqbal, M. A. (Proceedings of the Workshop on Heterogeneous Processing, Newport Beach, California, USA, April 1993, pp. 23-28).

Chapter 4 - Matching & Allocation

The LOCO Approach to Distributed Task Allocation in AIDA by VERDI
	Milutinović, V. M., Crnković, J. J., Chang, L.-Y., Siegel, H. J. (Proceedings of the 5th IEEE International Conference on Distributed Computing Systems, Denver, Colorado, USA, May 1985, pp. 359-368).

Load Distribution in Heterogeneous Multiple Processor Systems
	Haddad, E. (Proceedings of the Workshop on Heterogeneous Processing, Newport Beach, California, USA, April 1993, pp. 42-47).

Heuristics for Mapping Parallel Computations to Heterogeneous Parallel Architectures
	Tao, L., Narahari, B., Zhao, Y. C. (Proceedings of the Workshop on Heterogeneous Processing, Newport Beach, California, USA, April 1993, pp. 36-41).

PART TWO - HETEROGENEOUS PROCESSING SYSTEMS

Chapter 5 - Tightly-Coupled Systems

An Overview of the PASM Parallel Processing System
	Siegel, H. J., Schwederski, T., Kuehn, J., Davis, N. J. IV (D. D. Gajski, et al., Computer Architecture, Tutorial, IEEE CS Press, Los Alamitos, California, USA, May 1986, pp. 387-407 (a more up-to-date version of this paper will be inserted later, afetr we contact the authors)).

A Unified Vector/Scalar Floating-Point Architecture
	Jouppi, N. P., Bertoni, J., Wall, D. W. (Proceedings of the ASPLOS III, Boston, Massachusetts, April 1989, pp. 134-143).

An Architectural Framework for Supporting Heterogeneous Instruction-Set Architectures
	Silberman, G. M., Ebcioglu, K. (IEEE Computer, Vol. 26, No. 6, June 1993, pp. 39-56).

Chapter 6 - Loosely-Coupled Systems

The Design of Nectar: A Network Backplane for Heterogeneous Multicomputers
	Arnould, E. A., Blitz, F. J., Cooper,V, Kung, H. T., Sansom,V, Steenkiste, P. A. (Proceedings of the ASPLOS III, Boston, Massachusetts, USA, April 1989, pp. 205-216).

Network Supercomputing: Experiments with a CRAY-2 to CM-2 HIPPI Connection
	Vetter, R. J., Du, D. H. C., Klietz, A. E. (Proceedings of the Workshop on Heterogeneous Processing, Beverly Hills, California, USA, March 1992, pp. 87-92).

Heterogeneous By Design: An Environment for Exploiting Heterogeneity
	LaRowe, R. P. Jr., Probert, T. H. (Proceedings of the Workshop on Heterogeneous Processing, Newport Beach, California, USA, April 1993, pp. 84-91).

Linda in Heterogeneous Computing Environments
	Carriero, N., Gelernter, D., Mattson, T. G. (Proceedings of the Workshop on Heterogeneous Processing, Beverly Hills, California, USA, March 1992, pp. 43-46).
	
Heterogeneous Associative Computing
	Potter, J. (Proceedings of the Workshop on Heterogeneous Processing, Newport Beach, California, April 1993, pp. 3-11).

Chapter 7 - System Software Issues

A Distributed Heterogeneous Supercomputing Management System
	Ghafoor, A., Yang, J. (IEEE Computer, vol. 26. no. 6, June 1993, pp. 78-87).

An Actor-Based Framework for Heterogeneous Computing Systems
	Agha, G., Panwar, R. (Proceedings of the Workshop on Heterogeneous Processing, Beverly Hills, California, USA, March 1992, pp. 35-42).

Object Orientation in Heterogeneous Distributed Computing Systems
	Nicol, J. R., Wilkes, C. J., Manola, F. A. (IEEE Computer, vol. 26, no. 6, June 1993, pp. 57-67).

Visualization and Debugging in a Heterogeneous Environment
	Beguelin, A., Dongarra, J., Geist,V, Sunderam, V. (IEEE Computer, vol. 26, no. 6, June 1993, pp. 88-95).

An Efficient Data Interface for Heterogeneous Distributed Environment
	Lin, D. D. H., Shirazi, B., Kavi, K. (Proceedings of the 12th International Conference on Distributed Computing Systems, Yokohama, Japan, June 1992, pp. 390-397).

Chapter 8 - Application Software

Image Understanding: A Driving Application for Research in Heterogeneous Parallel Processing
	Weems, C. C. (Proceedings of the Workshop on Heterogeneous Processing, Newport Beach, California, USA, April 1993, pp. 119-126).

A Case Study in Metacomputing: Distributed Simulations of Mixing in Turbulent Convection
	Klietz, A. E., Malevsky, A. V., Chin-Purcell, K. (Proceedings of the Workshop on Heterogeneous Processing, Newport Beach, California, USA, April 1993, pp. 101-106).

Design of a Heterogeneous Parallel Processing System for Beam Forming
	Lee, C. E., Sullivan, D. (Proceedings of the Workshop on Heterogeneous Processing, Newport Beach, California, USA, April 1993, pp. 113-118).
	
Event Reconstruction in High-Energy Physics
	Rinaldo, F. J., Fausey, M. R. (IEEE Computer, Vol. 26, No. 6, June 1993, pp. 68-77).
�Suggestions for Further Reading

Note: This tutorial, if so desired by the IEEE CS Press, will include a section with suggestions for further reading (list of high quality papers not included into the selection, due to space limitations). A very preliminary version of this section is included here.

Towards a Virtual Multicomputer
	Batey, D. J., Padget, J. A. (Proceedings of the Workshop on Heterogeneous Processing, Newport Beach, California, USA, April 1993, pp. 71-76).

Particle Simulation on Heterogeneous Distributed Supercomputers
	Becker, J. C., Dagum, L. (Proceedings of the 1st International Symposium on High-Performance Distributed Computing, Syracuse, New York, September 1992, pp. 133-140).

Xab: A Tool For Monitoring PVM Programs
	Beguelin, A. L. (Proceedings of the Workshop on Heterogeneous Processing, Newport Beach, California, USA, April 1993, pp. 92-97).

Developing Applications for a Heterogeneous Computing Environment
	Butler, R., Gropp, W., Lusk, E. (Proceedings of the Workshop on Heterogeneous Processing, Newport Beach, California, USA, April 1993, pp. 77-83).

Partitioning Algorithms for a Class of Application Specific Multiprocessor Architectures
	Castro, C. de, Yalamanchili, S. (Proceedings of the Workshop on Heterogeneous Processing, Newport Beach, California, USA, April 1993, pp. 107-112).

Heterogeneity in Supercomputing Architectures
	Ercegovac, M. (Parallel Computing, Vol. 7, 1988, pp. 367-372).

Cluster-M Paradigms for High-Order Heterogeneous Procedural Specification Computing
	Eshagian, M. M., Freund, R. F. (Proceedings of the Workshop on Heterogeneous Processing, Beverly Hills, California, USA, March 1992, pp. 47-49).

Meta-Systems: An Approach Combining Parallel Processing and Heterogeneous Distributed Computing Systems
	Grimshaw, A. S. (Proceedings of the Workshop on Heterogeneous Processing, Beverly Hills, California, USA, March 1992, pp. 54-59).

A Simulation Study of Three Distributed Shared Memory Approaches
	Grujić, A., Tomašević, M., Milutinović, V. M. (Proceedings of the TENCON-94, Singapore, August 1994).

Triton/1: A Massively-Parallel Computer Designed to Support High Level Languages
	Herter, C. G., Warschko, T. M., Tichy, W. F., Philippsen, M. (Proceedings of the Workshop on Heterogeneous Processing, Newport Beach, California, USA, April 1993, pp. 65-70).

Adapting AVS to Support Scientific Applications as Heterogeneous Distributed Programs
	Homer, P. T., Schlichting, R. D. (Proceedings of the Workshop on Heterogeneous Processing, Beverly Hills, California, USA, March 1992, pp. 50-53).

Problem Representations for an Automatic Mapping Algorithm on Heterogeneous Processing Environments
	Leangsuksun, C., Potter, J. (Proceedings of the Workshop on Heterogeneous Processing, Newport Beach, California, USA, April 1993, pp. 48-53).

PVM Communication Performance in a Switched FDDI Heterogeneous Distributed Computing Environment
	Lewis, M. J., Cline, R. E. (Proceedings of the Workshop on Advances in Parallel and Distributed Systems, Princeton, October 1993, pp. 13-19).

Experiments with a Task Partitioning Model for Heterogeneous Computing
	Lilja, D. J. (Proceedings of the Workshop on Heterogeneous Processing, Newport Beach, California, USA, April 1993, pp. 29-35).

Resource and Service Trading in a Heterogeneous Large Distributed Systems
	Ni, Y., Goscinski, A. (Proceedings of the IEEE Workshop on Advances in Parallel and Distributed Systems, Princeton, New Jersey, October 1993., pp. 2-7).

A Design Method for Optimal Synthesis of Application-Specific Heterogeneous Multiprocessor Systems
	Prakash, S., Parker, A. C. (Proceedings of the Workshop on Heterogeneous Processing, Beverly Hills, California, USA, March 1992, pp. 75-80).

Jade: A High-Level, Machine Independent Language for Parallel Processing
�	Rinard, M. C., Scales, D. J., Lam, M. S. (IEEE Computer, Vol. 26, No. 6, June 1993, pp. 28-38).

INTRODUCTION

Technological, organizational, and architectural development

Parallel architectures

Heterogeneous systems

Heterogeneous system - computer system which efficiently supports different kinds of computation (e.g., SIMD, MIMD, vector, ...)

� EMBED CDraw4 ���

Example: the execution times on a serial baseline system (the first row),�a vector supercomputer (the second row to the left), �and a heterogeneous suite (the second	 row to the right)
CONCEPTS

User-oriented approach and compiler-oriented approach

Parallelism detection phase, �parallelism type characterization phase, �hardware selection phase, �allocation phase

Four phases of heterogeneous have to be performed automatically

PARALLELISM DETECTION

Input: sequential code

Output: parallel code �
Data dependency graphs �
Coarse-grained parallelism�
Fine-grain parallelism (vectorizers, ...)

PARALLELISM TYPE CHARACTERIZATION

Data dependency graphs extended with execution time estimations

Code-type profiling combined with analytical benchmarking �and purely analytical approach

Code-type profiling estimates the code-type, code-type vector, �frequency of computational structures (templates),�or low level operations (parameters)

Analytical benchmarking provides the measure of optimal code speedup

Features of SIMD and MIMD are analyzed and organized into mathematical models
Performance Assessment Windows System�
Pease et al.�
Syracuse University, January 1991

APCT: Data-flow graphs for expressing parallelism�at all granularity levels�
ARCT: Special tree-like classification scheme representing �computation, communication, I/O, and control subsystems�
Subsystems can be further decomposed into lower level subsystems �until these can be benchmarked or analytically modeled�
PAT: Mapping to real architecture (not an easy thing to do);�evaluation is done by traversing a data-flow graph, �adding timing values obtained from ARCT, �and performing the critical path analysis�
IGDT: Graphical representation of results�
Advantages: Enables parallelism at all granularity levels, subtle architectural details are incorporated�
Disadvantages: Too expensive for parallelism type characterization�
Quality of evaluation results depends on mapping strategies�
[PEASE91]	Pease, D., Ghafoor, A., Ahmad, I., Andrews, D. L., Foudil-Bey, K., Karpinski, T. E., Mikki, M. A., Zerrouki, M., “PAWS: A Performance Evaluation Tool for Parallel Computing Systems,” IEEE Computer, Vol. 24, No. 1, January 1991, pp. 18-29.

� EMBED CDraw4 ���
Template-Based Approach�
Yang, Ahmad, and Ghafoor�
Purdue University and Hong Kong University�
The approach based on detection of "augmented templates" inside a task�
The essence is to recognize frequent topological structures, �referred to as templates, inside a Task Flow Graph (TFG)�
Augmented templates are templates with assigned parameters, �such as performance parameters, number of processes, template depth, ...
Step 1: To define the Representative Set of Templates �
Step 2: Code profiling - �the first phase is to define Augmented Template Graph (ATG), �the second, optional, phase to perform fine-grain analysis as in PAWS �
Parallel with step 2: Analytical benchmarking �responsible for the analysis of a small subset of augmented templates;�the rest of them are analyzed by regression analysis�
Analytical benchmarking can be performed on the coarse-grain level �as well as on the fine-grain level, like in the ARCT tool of PAWS�
Step 3: Estimation performed via critical path analysis

Irregular structures and fine-grain analysis - PAWS�
Advantages: Simplicity�
Disadvantage: Imperfect estimations in coarse-grain analysis�
[YANG93]	Yang, J., Ahmad, I., Ghafoor, A., "Estimation of Execution Times on Heterogeneous Supercomputer Architectures," Proceedings of the International Conference on Parallel Processing, 1993, pp. I-219 - I-226.

� EMBED CDraw4 ���
Parametric Approach�
Yang, Khokhar, Sheikh, and Ghafoor�
Purdue University and Widener University�
Approach is based on detection of low-level operations �referred to as parameters�
Task is assumed to be in a form of series of parallel supersteps, �separated by communication units

Step 1: Computation code profiling - �to count sequential parameters and parallel parameters �
Number of parallel parameters is dependent �on the machine size as well as the available parallelism�
Number of parallel parameters are taken �with respect of the processor with the heaviest load�
Step 2: Communication code profiling �according to the Architecture Independent Model�
Parallel with Step 1 and Step 2 -�analytical benchmarking using PAWS provides the m times n matrix B, where bmn represents the performance of machine m for parameter n�
Step 3: Estimating the computation as Et, comp = B*Vt,�predicting the communication time Et, comm via analytical modeling, �and obtaining the overall execution time by summing these two vectors�
Advantages: Simplicity �and better performance than in the template-based approach�
Disadvantages: Communication time cannot be precisely modeled�
[YANG94]	Yang, J., Khokhar, A., Sheikh, S., Ghafoor, A., "Estimating Execution Time for Parallel Tasks in Heterogeneous Processing (HP) Environment," Proceedings of the Workshop on Heterogeneous Processing, Cancun, Mexico, April 1994, pp. 23-28.

� EMBED CDraw4 ���
Analytical Approach in SIMD/SPMD Environment�
Watson, Siegel, Antonio, Nichols, and Atallah, �Parallel Processing Laboratory at Purdue University

Instruction-level SIMD/SPMD environment�
Program in Explicit Language for Parallelism: �blocks, if-then-else constructs, and for loops�
Flow-analysis tree: blocks are leaves, �if-then-else constructs and for loops are non-leaf nodes�
SIMD/SPMD tradeoff tree: Information of execution times of �blocks, if-then-else constructs, and for loops

Execution time of if-then-else constructs is estimated �by a model incorporating probability theory
�TdSIMD = PthenTthenSIMD + PelseTelseSIMD + (1-Pthen-Pelse)(TthenSIMD+TelseSIMD)
= (1-Pelse)TthenSIMD+(1-Pthen)TelseSIMD

TdSPMD=pthenTthenSPMD+(1-pthen)TelseSPMD

There is no mode change inside if-then-else constructs�
Number of iterations for for loops has to be known�
Mode change is allowed inside for loops�
Mixed mode execution, Moore's algorithm for multistage graphs�
Advantages: Simplicity and performance�
Disadvantages: In cases of low correlation �between past and future execution times, �this probability model can yield imperfect results�
[WATSO94a]	Watson, D., Siegel, H. J., Antonio, J. K., Nichols, M. A., Atallah, M. J., "A Block-Based Mode Selection Model for SIMD/SPMD Parallel Environments," Journal of Parallel and Distributed Computing, Vol. 21, No. 3, June 1994, pp. 271-287.
� EMBED CDraw4 ���
HARDWARE SELECTION PHASE
	
Find the configuration yielding minimal execution time, �while satisfying cost constraint �(mapping of application components to machine types)

NP-complete problem

Casavant classification: �static or dynamic, optimal or suboptimal, algorithmic or heuristic,�mathematical programming, queuing theory, graph theory
Optimal Selection Theory (OST)�
Freund, Naval Ocean System Center�
An introduction to hardware selection �
From all configurations which satisfy the cost constraint, �the one yielding the fastest execution time has to be selected�
OST format for applications: Segments run sequentially�(can be decomposable or non-decomposable)�
Only scalar speedup is assumed �for segments mapped to a non-optimal architecture type�
Decomposability factor can be arbitrarily large�
Decomposability and execution time are linearly dependent�
Code type profiling and analytical benchmarking �first introduced as off-line processes�
Code-type profiling only provides the type �(later this definition has evolved)�
Existence proof for optimal execution time is given, �but no specific algorithm is introduced�
[FREUN89]	Freund, R. F., “Optimal Selection Theory for Superconcurrency,” Supercomputing, November 1989.

Segment sj�tjB�Code Type������1�0.35�vector, non-decomposable��2�0.15�vector, decomposable��3�0.20�fine-grain parallel��4�0.20�coarse-grain parallel��5�0.10�scalar��	
Machine type�Cost�Speedup Information������x1�$4M�10-vector, 2-scalar��x2�$1M�5-vector, 2-scalar��x3�$1/3M�3-vector, 1-scalar��x4�$1M�15-fine grain parallel��x5�$1/3M�6-fine-grain parallel, 1-scalar��x6�$1M�4-coarse-grain parallel, 1-scalar��x7�$1/3M�2-coarse-grain parallel, 1-scalar��x8�$1/4M�2-scalar��� EMBED CDraw4 ���
(i ti(sj)/vi, such that (ivici(C

�Vector supercomputer x1�s = Ts/TV = 1/(0.35/10 + 0.15/10 + 0.20/2 + 0.20/2 + 0.10/2) = 3.33�
A heterogeneous suite composed of x2, three x3, x4, and x6 (cost as x1)�s = TS/TH = 1/[0.35/5+0.15(0.25/5+0.75/3)/4+0.20/15+0.10/2] = 5.139
Augmented Optimal Selection Theory (AOST)�
Wang, Kim, Nichols, Siegel, Freund, and Nation�
Purdue University and Naval Ocean System Center�
The extension of OST in two ways: �Possible assignments of codes to non-optimal machines �and limited number of machines�
Two extensions over OST: �Decomposability factor cannot be arbitrary and �mapping to non-optimal machines is allowed�
Number of machines and utilization factor �have to be taken into consideration�
Analytical benchmarking is the same as in OST, �code-type profiling yields code-type profiling vector: �Compatibility degree for each segment on each architecture�
AOST allows different machine models for the same machine type�(one algorithm is given for code block distribution in that case)�
[WANG92]	Wang, M., Kim, S., Nichols, M., Freund, R., Siegel, H. J., Nation, W. G., “Augmenting the Optimal Selection Theory,” Proceedings of the Workshop on Heterogeneous Processing, Beverly Hills, California, USA, March 1992, pp. 13-22.

Heterogeneous Optimal Selection Theory (HOST)�
Chen, Eshagian, Khokhar, and Shaaban�
New Jersey Institute of Technology (NJIT)�and University of California Los Angeles (UCLA)�
Two extensions over AOST: �More realistic application format and�considerations of effects of fine-grain mappings onto heterogeneous suite�
HOST format: Applications composed of sequentially executing subtasks composed of parallel code segments exhibit different execution type, code segments composed of code blocks�
The performance depends not just on code types, �but on system topology and application structure, �communication patterns, etc., as well�
Existence proof and a mapping methodology are given�
Mapping methodology based on two representation graphs: Heterogeneous Clustering Methodology (HCM) System Graph �and HCM Application Graph�
HCM System Graph shows the machine type and connectivity�
HCM Application Graph shows application structure �and communicating segments�
Three sets of rules are given for matching and allocation�
Advantages: Simplicity, speed, communication requirements �are taken into consideration�
Disadvantage: Precision�
[CHEN93]	Chen, S., Eshagian, M. M., Khokhar, A., Shaaban, M. E., “A Selection Theory and Methodology for Heterogeneous Supercomputing,” Proceedings of the Workshop on Heterogeneous Processing, Newport Beach, California, USA, April 1993, pp. 15-22.

� EMBED CDraw4 ���

HCM Methodology - An Example

Scalar segment t0 to x2 machine
(code segment clustering level, "choose next best")

SIMD segment t1 to x4 machine (code segment level, "choose best")

MIMD segment t2 to x6 machine (code segment level, "choose best")

Vector segment t3-t8 to the vector cluster of the highest level
("choose best")

Vector segment t3 to x2 machine (code block clustering level)

Vector segment t4 to x31 machine (code block clustering level)

Vector segment t5 to x32 machine (code block clustering level)

Vector segment t6 to x3 machine (code block clustering level)

Vector segment t7 to x31 machine (code block clustering level)

Vector segment t8 to x32 machine (code block clustering level)
�
�
Layered Graph Approach

Iqbal, University of Engineering & Technology, Lahore, Pakistan

Algorithmic approach

Very strict conditions (chain-like applications and system topologies, restricted communication patterns, �and restricted segment assignment policies)

Problem of finding the least cost path through layered graph

Reduction of the selection problem onto �a finding of a least-cost path through a layered graph

HOST format, array of processor pools, restrictive communication, contiguity constraint, cost constraint given in the number of processors�
More processors from one pool, less processors from another pool:�How many processors to assign to which subtask?�
Step 1: Compute time/cost combinations for each subtask�(this is done by the layered graph G)�
Step 2: Compute the number of blocks for each subtask�(layered graph H)�
Advantages: Algorithmic approach, good results, satisfiable performance�
Disadvantages: Restrictive format

� EMBED CDraw4 ���

[IQBAL93]	Iqbal, M. A., “Partitioning Problems in Heterogeneous Computer Systems,” Proceedings of the Workshop on Heterogeneous Processing, Newport Beach, California, USA,
April 1993, pp. 23-28.
Layered Graph Approach - An Example

Overall time constraint T = 30 time units

Time constraint division D = 6 (6 chunks of 5 time units)

Final result is 3 cost units

First subtask - one x3 machine

Second subtask - one x4 and one x6 machine

Third subtask - two x3 machines
�
�
�Time�Cost�����5�cost (x2) = 1��10�cost (x3) = 1/3��15�cost (x3) = 1/3��20�cost (x3) = 1/3��25�cost (x3) = 1/3��30�cost (x3) = 1/3��
Time�Cost�����5�cost (x6) + cost (x6) = 2��10�cost (x6) + cost (x6) = 2��15�cost (x6) + cost (x6) = 2��20�2 cost (x3) = 2/3��25�2 cost (x3) = 2/3��30�2 cost (x3) = 2/3���
Time�Cost�����5�---��10�cost (x2) = 1��15�2 cost (x3) = 2/3��20�cost (x3) = 1/3��25�cost (x3) = 1/3��30�cost (x3) = 1/3���
ALLOCATION

During the execution, the situation on a system may change, �so hardware selection results may be refined�
This phase may be intertwined with an application execution,�and can even involve a task migration�
Dynamic and fast schemes�
Casavant classification�

Heuristic Approaches�
Tao, Narahari, and Zhao�
University of George Washington and Concordia University�
Three heuristic techniques are suggested, �based on moving through a space of possible solutions,�as well as on evaluation and recording of solutions�
Techniques based on the search through a solution space�
The moves through solution space: moving a block �from one processor to another, exchanging loads of two processors�
After each move, evaluation function is calculated�
Simulated annealing: Positive gain is always followed, �negative gain is followed with the probability p,�to avoid entrapment in local optima�
Probability p is reduced: Multiplied by a cooling ratio r (0(r(1)�
Tabu search performs aggressive search �through the neighborhood of the present solution�
Best result in the last i iterations is taken, �so the entrapment in local optima is avoided�
Value i must not be too large - too much time is spent �on the part of overall space and many good candidates are skipped�
Stochastic probe - a combination of aggressive features �from the tabu search and stochastic features from the simulated annealing�
A set of probes - a probe aggressively searches for a local optimum;�the last solution in a probe is randomly modified �to become the initial solution of the next probe�
More than three times faster compared to simulated annealing �and more than six times compared to tabu search�
[TAO93]	Tao, L., Narahari, B., Zhao, Y. C., “Heuristics for Mapping Parallel Computations to Heterogeneous Parallel Architectures,” Proceedings of the Workshop on Heterogeneous Processing, Newport Beach, California, USA, April 1993, pp. 36-41.

Probabilistic Heuristic Approaches - An Example

Computation matrix can be reconstructed
from the example for the OST

Communication costs: let us assume uniform costs for simplicity�
Only concurrent tasks can be analyzed (no data dependences)
so we will analyze simplified example involving tasks t3 - t8

Initial solution - first row
�First move - task t8 is moved to x4 machine yields negative gain -
reject

Second move - task t4 is moved to x4 machine yields zero gain -
new solution (second row)

Third move - loads of x2 and x4 exchanged yields positive gain -
new solution (third row)

Better solution will not be reached so the stopping criterion
will be met in several moves
�
The LOCO Approach

Milutinović, Crnković, Chang, and Siegel�
Purdue University, May 1985

Dynamic task allocation in distributed heterogeneous systems

Separation of the allocation control information, which propagates through the network in the form of a train containing pointers �to instructions and data, in order to use every possible queue�
Cluster-oriented Artificial Intelligence Directed Architecture (AIDA), allocation bus, software bus, LOCO interfaces
LOCO train exploits the possible parallelism maximally�
As soon as the wagon is scheduled for execution, �it is substituted by an imaginary copy of the block, �and the train proceeds to find resources for the execution, �of blocks which are not data dependent on the scheduled block�
When the execution is finished �data are broadcast and collected by a train�
If results are no longer needed,�the block which produced them can be deallocated �
Advantages: Good performance �when load balancing cannot be performed�
Disadvantage: Broadcasting is expensive
�� EMBED CDraw4 ���

[MILUT85]	Milutinović, V. M., Crnković, J. J., Chang, L.-Y., Siegel, H. J., “The LOCO Approach to Distributed Task Allocation in AIDA by VERDI,” Proceedings of the 5th IEEE International Conference on Distributed Computing Systems, Denver, Colorado, USA, May 1985, pp. 359-368.
The LOCO Approach - An Example

After t0 is sheduled, train is stationed at SPPR that will be used
for the execution of t0 (first row)

After t1 is sheduled, train is stationed at SPPR that will be used
for the execution of t1 (second row)

Since t2 can run concurrently with t1,
train can be proceed with the scheduling of t2 (third row)

When t0 is finished, the train can be at t1 or t2,
so the information about the end of t0 has to be broadcast

�
SYSTEMS

Primarily experimental, non-commercial systems, �used in scientific environments

Mixed-mode systems for instruction-level heterogeneity�
Mixed-machine systems for block-level heterogeneity

System software support�
Application software

MIXED-MODE SYSTEMS

Temporal heterogeneity

Instruction level heterogeneity�
Dynamic reconfiguration of hardware �to support different execution modes�
SIMD/MIMD combination (PASM, TRAC, OPSILA, Triton/1)

Scalar/vector combination (the MultiTitan project)

PASM (Partitionable SIMD/MIMD)

Siegel, Schwederski, Kuehn, and Davis, �Parallel Processing Laboratory at Purdue University

Both SIMD and MIMD types of parallelism, �mixed on all granularity levels

Elegant and fast mode switch�
Partitions with non-fixed sizes for multiple process groups�
2n Processing Elements (PEs) controlled by 2q Micro Controllers (MCs)�
MCs control partitions which may be joined together �to form a new partition, but the size has to be a power of two�
Addresses of the PEs from the same partition have to agree in last n-i bits�
Multistage interconnection network�
SIMD to MIMD change: �JSR to an address outside the SIMD Instruction Space�
MIMD to SIMD change: Special return statement�
Emulated shared memory: Reference to a shared memory location generates an exception which initiates message�
Advantages - user's point of view: Fault tolerance, �flexibility in resource sharing, ...�
Advantages - system's point of view: Easy routing, �addressing schemes, scheduling, uniformity, ...�
Image understanding, biomedical signal processing, �speech understanding, ...

[SIEGE86]	Siegel, H. J., Schwederski, T., Kuehn, J., Davis, N. J. IV, “An Overview of the PASM Parallel Processing System,” D. D. Gajski, et al., Computer Architecture, Tutorial, IEEE CS Press, Los Alamitos, California, USA, May 1986, pp. 387-407.

� EMBED CDraw4 ���

Triton/1

Herter, Warschko, Tichy, and Philippsen�
University of Karlsruhe�
1992 - 1993�
Improving programmability by hardware/software codesign�
Programming language, optimizing compiler,�and parallel architecture were codesigned�
Language Modula 2 * - FORALL construct and data allocators�
FORALL construct - the only means for parallelism creation�
Synchronous FORALL - SIMD execution,�SIMD branches - multiple groups with different speeds�asynchronous FORALL - MIMD execution,�
Data allocators have to reconcile data locality and maximum parallelism�
These two issues can never be totally reconciled - �there has to be a communication!�
Communication has to be as fast as computation,�and masked by computation�
Shared address space�
Front-end: Intel 486, �back-end: 256 Motorola-based processing elements containing processor, memory, floating point unit, network processor, etc.�
Massively parallel input/output - each PE supplied with a disk,�notion of a vector file�
Scalable DeBruijn network �(hypercubes and grids have lower scalability),�wormhole routing, routing tables, load dependent detouring, buffering�
SIMD to MIMD mode switching:�1. JMP to desired location�2. SIMD request bit deactivated�
MIMD to SIMD mode switching:�1. SIMD request bit activated�
Network performance analyzed by simulation:�Delay within O(log N), N - the number of nodes and messages�
System complexity: 256 PEs + 2 interPE buses +�interconnection network + 256 disks�
Advantages: Programmability, �flexibility in process group sizes, scalability�
Disadvantages: Limited ways for parallelism creation�
[HERTE93]	Herter, C. G., Warschko, T. M., Tichy, W. F., Philippsen, M., “Triton/1: A Massively-Parallel Computer Designed to Support High Level Languages,” Proceedings of the Workshop on Heterogeneous Processing, Newport Beach, California, USA, April 1993, pp. 65-70.

� EMBED CDraw4 ���
MultiTitan Architecture�
Jouppi, Bertoni, and Wall�
Digital Equipment Corporaration�
MultiTitan project�
1985-1987�
Good for applications with instruction-level heterogeneity �and small portions of vectorizable code ��
Instead of vector registers, a register file is used:�At one moment as a set of scalar registers, �at another moment as a vector register (or a set of vector registers) �
Three fully pipelined functional units in ALU�(add, multiply, and reciprocal approximation)�
Load/store instructions go in parallel with FPU instructions - �execution of vector instructions can be fastened two times�
Vector operands are placed in consecutive registers, �so vector instructions are reissued with modified addresses�
Register reservation is a problem in this architecture,�registers are reserved upon issuing of an instruction�
Scoreboarding is used - register write reservation table�
Half performance register length of MultiTitan is suitable for �a large class of applications and functional units latencies�
Researchers have been trying to make superscalar architecture �as good as vector architectures on vectorized codes [WEISS94]�
[JOUPP89]	Jouppi, N. P., Bertoni, J., Wall, D. W., “A Unified Vector/Scalar Floating-Point Architecture,” Proceedings of the ASPLOS III, Boston, Massachusetts, April 1989, pp. 134-143.�
� EMBED CDraw4 ����
MIXED-MACHINE SYSTEMS

Interconnected different machines suitable for �computationally different code

Spatial heterogeneity

Systems based on new internetworking and/or interfacing strategies �(purely protocol software or combined with hardware) - loose integration, but better treatment of communication overheads,�allow upgrading to a full-success system

Systems based on system software support �(languages and operating system support)

Loosely coupled mixed-machine systems:�Minnesota Supercomputing Center setup, Nectar, �Heterogeneous By Design (HBD) system�
Tightly-coupled mixed-machine systems: �CISC to multiple issue processor smooth migration�
Network Computer Architecture (Nectar)

E. Arnould, F. Bitz, E. Cooper, H. Kung, R. Sansom, and P. Steenkiste

Scalable, fast, and supports heterogeneity�
Nectar system: Nectar-net + CABs�
CAB is the powerful RISC processor appearing as �interface which connects node and network

Nectar-net: Composed of hubs�
Hub is the element which is used to connect CABs

Hub - hub and CAB - hub interfaces are the same, �so Nectar-net can appear in arbitrary topology

Protocols off-loaded to CABs�
Applications can also be off-loaded to CABs�
At the time of appearance Nectar exhibited �an order of magnitude improvement over LANs�
Nectar prototype: Warp systolic arrays and Sun machines �
Latency is primarily introduced by inefficient software - �data copying and context switching time must be reduced�
Multithreading - "lightweight processes"�
Mailboxes for communications�
Communication software: �Datalink protocol, transport protocol, node - CAB interface software�
Programming interface: Nectarine�
Advantages: Flexibility, scalability�
Disadvantage: No orchestration tools

[ARNOU89]	Arnould, E. A., Blitz, F. J., Cooper, E. C., Kung, H. T., Sansom, R. D., Steenkiste, P. A., “The Design of Nectar: A Network Backplane for Heterogeneous Multicomputers,” Proceedings of the ASPLOS III, Boston, Massachusetts, USA, April 1989, pp. 205-216.�
� EMBED CDraw4 ���

Minnesota Supercomputing Center Setup�
Vetter, Du, and Klietz�
University of Minnesota and Minnesota Supercomputing Center�
Feasibility of the High Performance Parallel Interface (HIPPI) usage �in heterogeneous distributed systems�
1992�
CRAY-2 (vector machine) and CM-2 (massively parallel machine)�connected by HIPPI�
Communication protocol given in a library form, �based on remote procedure call, seven layers structure like OSI model�
Results show that for large packets it is possible to use�HIPPI effectively�
The first practical use of HIPPI (Carnegie Mellon University) -�one tenth of the time used by CM-2 alone for specific applications�
CRAY-2: A vector machine, four 4.1ns processors, 4 GB memory,�HIPPI sending and receiving modules, four token rings �
CM-2: Massively data parallel machine: VAX 6420 as front-end,�back-end of 32K one-bit processors viewed as �2048 powerful floating point ones�
Front-end is connected to HIPPI control unit for �transfer initiation purposes�
Transfer: VAX signals HIPPI CU when it is ready, �HIPPI CU arbitrates for control of I/O channel on CM-2,�I/O channel reads data from CM-2 and �writes them into HIPPI CU FIFO buffers,�HIPPI CU sends data to the remote machine using burst handshakes�
Besides HIPPI hardware, software support is needed: �HIPPI/RPC based on remote procedure call, seven layers,�each layer corresponds to one OSI model layer�
Data conversion done in hardware on both sides�

Three types of communication: SUBROUTINE (client-server),�PIPELINE (concurrent master and slave execution), and �ASYNC (limited form of bidirectional communication) �
[VETTE92]	Vetter, R. J., Du, D. H. C., Klietz, A. E., “Network Supercomputing: Experiments with a CRAY-2 to CM-2 HIPPI Connection,” Proceedings of the Workshop on Heterogeneous Processing, Beverly Hills, California, USA, March 1992, pp. 87-92.

Heterogeneous By Design (HBD)�
LaRowe and Probert�
Center for High Performance Computing at �Worcester Polytechnic Institute�
Galactica Net heterogeneous mesh architecture�
Mach distributed operating system�
Analogy with multidisciplinary projects: �Scientists perform the work for which they are specialized and communicate through messages or shared files�
Main memory at each node is treated as a cache space for �a global shared virtual memory�
Software and hardware solutions for shared memory implementations�(virtual shared rings, �page-granularity update-based cache coherence policy)�
Sophisticated heterogeneous programming environment�
Data conversion done in hardware - �Galactica Net Interface Module (GNIM) for every type of computer�
Routing through Mesh Router Chips (MRC)�
Colleagues, messaging ports, and shared regions�
Wide range of communication primitives�
Multiple senders and multiple receivers are possible�
Applications are started by invoking "initiator" colleague�
Matching via colleague attributes�
HBD components: HBD Distributed Server, �HBD Run-Time Environment, Insight Integrator, Language Interface, Static Analysis Tool, Application Structure Display Tool, �
Reusability of the colleagues�
Application tuning via knowledge databases �which grow with accumulating experience�
Automatic orchestration tools are not yet supported�
[LAROW93]	LaRowe R. P. Jr., Probert, T. H., “Heterogeneous By Design: An Environment for Exploiting Heterogeneity,” Proceedings of the Workshop on Heterogeneous Processing, Newport Beach, California, USA, April 1993, pp. 84-91.
� EMBED CDraw4 ���
Heterogeneous Instruction Set Approach

Silberman and Ebcioglu, IBM T. J. Watson Research Center

Smooth migration from CISC architectures �to newer superscalar or VLIW architectures

Interpretation of the CISC instruction set, recompilation

Piece of hardware which can execute both CISC instructions and �the new system instructions, but not simultaneously

Actually, represents mixed-machine �tightly-coupled heterogeneous system�
Migrant machine resources are architected and visible to native machine,�native machine resources are non-architected�
Switching is necessary for the execution of non-translatable code �and performed via switching monitor which contains addresses of instruction groups in migrant and native machine languages�
Fast searching through switching monitor using associative techniques�
Object code translation in four steps: �1. constant propagation for branch target resolution, �2. generation of the RISC-like intermediate code, label generation, and switching table computation, �3. standard sequential optimizations, and �4. register allocation, code reordering for parallel execution�
Self-modifying code is detected via bit map, �native mode is invalidated, and migrant mode is activated�
Maintaining of the precise exception property: �Exceptions in migrant machine format,�last instruction which committed a result has to be pinpointed,�tagging scheme for memorizing reordered instructions �which committed results �
Unsafe loads: Loads moved in front of stores in code rearranging process,�the compiler cannot be sure if the addresses of store-load pair �are going to be evaluated to a same value at run-time, �tagging scheme associated with non-architected registers�
Simulation analysis is performed: Instruction count reduced 3 - 5 times,�precise exception property reduces the performance 1.3 - 1.4 times�
Importance: The first heterogeneous tightly-coupled machine�
Disadvantage: Two machines cannot go in parallel��� EMBED CDraw4 ���

[SILBE93]	Silberman, G. M., Ebcioglu, K., “An Architectural Framework for Supporting Heterogeneous Instruction-Set Architectures,” IEEE Computer, Vol. 26, No. 6, June 1993,
pp. 39-56.

SYSTEM SOFTWARE

Heterogeneity accommodation as well as heterogeneity exploitation

Existing systems are more concerned with accommodating heterogeneity by organizing heterogeneous suite as a virtual machine

Coordination language and run-time operating system extensions�
Languages can be standard or object-oriented�
Operating system extensions can be based �on conventional or associative techniques

UPS Data Conversion Protocol�
Lin, Shirazi, and Kavi�
IBM Corporation and University of Texas�
Data conversion protocol for semantic language incompatibilities�
Separation of data structure information and data values �allows fast pipelined data conversion�
Data structure is defined as a sequence of bytes plus �data structure descriptor�
Data structure information: Horizontal and vertical relations,�vertical relations - relations between primitive data components,�horizontal relations - relations between compound data types and their primitive elements�
Constructor Representation (Crep) for vertical relations,�Data Representation (Drep) for horizontal relations,�Crep and Drep constitute data structure descriptor�
UPS data frame for data values�
Interface specification language for the specification of �parsing and conversion procedures�
While a server performs type checking, �a client can start with data pre-conversion �
When data are matched on a server side �the acknowledge signal is sent to client side, �a client responds by sending converted UPS_frame�
Up to 50% improvement over other systems�
[LIN92]	Lin, D. D. H., Shirazi, B., Kavi, K., ”An Efficient Data Interface for Heterogeneous Distributed Environment,” Proceedings of the 12th International Conference on Distributed Computing Systems, Yokohama, Japan, June 1992, pp. 390-397.

Visualization and Debugging in PVM�
Beguelin, Dongarra, Geist, and Sunderam �
Carnegie Mellon University, University of Tennessee, �Oak Ridge National Laboratory, and Emory University �
Xab module for monitoring: Xab library, PVM process abmon, �display process named xab�
Library routines send tracing messages to abmon, �special monitoring process active all the time, �synchronized clocks are not supported�
Hence tool for application tuning: Application and �machine configuration tools, cost matrix for machines�
Static allocation, tracing execution flow, �and bottleneck localization purposes�
Currently very important tool, �but its value is expected to drop�
[BEGUE93a]	Beguelin, A., Dongarra, J., Geist, A., Sunderam, V., “Visualization and Debugging in a Heterogeneous Environment, ” IEEE Computer, vol. 26, no. 6, June 1993, pp. 88-95.

Linda�
Carriero, Gelernter, and Mattson�
Yale University�
1992�
Coordination language giving general purpose parallel language �when combined with a conventional sequential language�
Distributed shared memory systems�
"Uncoupling" in space and time means �easier heterogeneity accommodation�
In current Linda implementation tuples can be accessed only by operations found in a single executable image - closed operations�
Closed Linda operation means that �all knowledge of Linda operations known at link time �which is suitable for optimizations�
Open Linda operations - access of any Linda operation�
For heterogeneous processing - open, closed, and mixed operations�
[CARRI92]	Carriero, N., Gelernter, D., Mattson, T. G., “Linda in Heterogeneous Computing Environments,” Proceedings of the Workshop on Heterogeneous Processing, Beverly Hills, California, USA, March 1992, pp. 43-46.
Actor-Based Model�
Agha and Panwar�
University of Illinois�
Heterogeneous system based on a �language merging object-orientation and parallel processing�
Language and communication interface�
Resource management for higher performance�

Language prerequisites: Concurrency support, �dynamic systems modeling, machine independency, modularity,�user hints for parallelism type characterization, selection, and allocation�
User-supplied metrics for resource management: Computation/communication ratio, isoefficiency functions, task priority�
Mapping can be performed with the help of three meta-level actors:�Mailq, eval_architecture, and creation�
Meta-level actor mailq detects messages�
Meta-level actor eval_architecture selects hardware �with the help of knowledge stationed in HCS_config actor�
Finally new actor is created on selected machine via �creation meta-level actor�
Disadvantages: So far suitable only for user-oriented approach

[AGHA92]	Agha, G., Panwar, R., “An Actor-Based Framework for Heterogeneous Computing Systems,” Proceedings of the Workshop on Heterogeneous Processing, Beverly Hills, California, USA, March 1992, pp. 35-42.

Virtual Heterogeneous Associative Machine (VHAM)

Potter�
 Kent State University�
Initially, data are placed on the most suitable architecture �and not moved later�
Data quantities are identified by content, not address, �so it is unimportant where the data reside�
Instructions have to be broadcast�
Since broadcasting is expensive, instructions have to be powerful, �such as matrix_multiply, convolve, histogram, etc.�
It is possible to design new instructions and install them via special tool�
The decision whether to execute received instruction �is brought inside cells (processor-datum pair)

Large data sets are static, if necessary they can be moved as parameters�
It is possible that instruction arrives before parameters, �instruction-parameter synchronization is performed �inside the node monitor�
Parallelism type characterization and partly parallelism detection �are implicitly performed�
Data allocation is the key issue �
[POTTE93]	Potter, J., “Heterogeneous Associative Computing,” Proceedings of the Workshop on Heterogeneous Processing, Newport Beach, California, April 1993, pp. 3-11.

� EMBED CDraw4 ���

APPLICATION SOFTWARE

Image processing �
Mixing in turbulent convection �
Acoustic beam forming �
Multimedia queries�
Meteorology �
Image Processing�
Weems, University of Massachusetts�
Level 1: Pixel oriented computations - SIMD computation�
Level 2: Grouping, splitting, and matching of objects,�model instantiation, data management,�data parallelism with a lot of branching - SPMD computation�
Level 3: Searching through a knowledge base - MIMD computing�
[WEEMS93]	Weems, C. C., “Image Understanding: A Driving Application for Research in Heterogeneous Parallel Processing,” Proceedings of the Workshop on Heterogeneous Processing, Newport Beach, California, USA, April 1993, pp. 119-126.
Particle Tracing�
Klietz, Malevsky, and Chin-Purcell, �Minnesota Supercomputer Center, �U. S. Army High Performance Computing Center�
CM-5: 3-D flow field of thermal convection�(matrix-vector multiplication)�
CRAY-2: Traces of particles �(differential equations solving by Runge-Kutta scheme)�
CM-200: Statistics of particle distribution �
SGI VGX workstation: Visualization�
HIPPI used to connect these four machines�
[KLIET93]	Klietz, A. E., Malevsky, A. V., Chin-Purcell, K., “A Case Study in Metacomputing: Distributed Simulations of Mixing in Turbulent Convection,” Proceedings of the Workshop on Heterogeneous Processing, Newport Beach, California, USA, April 1993., pp. 101-106.
�
Acoustic Beam Forming�
Lee and Sullivan, Naval Postgraduate School, Monterey, California�
Acoustic beam forming applications�
FFT and matrix (N*M) vector (M*1) multiplication�
Communication-intensive application�
[LEE93]	Lee, C. E., Sullivan, D., “Design of a Heterogeneous Parallel Processing System for Beam Forming,” Proceedings of the Workshop on Heterogeneous Processing, Newport Beach, California, USA, April 1993, pp. 113-118.
Multimedia Queries�
Khokhar and Ghafoor, Purdue University�
Multimedia query processing�
Various fields of computer science/engineering: �Image and signal processing, artificial intelligence, multimedia databases�
Heterogeneous system composed of one 16K Mas Par, one nCube, �two multimedia servers, video camera, connected by fast optical network�
[KHOKH94]	Khokhar, A., Ghafoor, A., “A Heterogeneous Processing (HP) Framework for Multimedia Query Processing,” Proceedings of the Heterogeneous Computing Workshop, Cancun, Mexico, April 1994, pp. 51-57.
Meteorology Applications�
Mechoso, Farrara, and Spahr, University of California, L. A.�
Vector computation for Oceanic General Circulation Model (OGCM) �and Atmospheric General Circulation Model (AGCM)/Dynamics�
Massively data parallel computations for AGCM/Physics�
Setup is based on CASA network testbed,
supports masking communication with computation,
and is able to score superlinear speedup�
[MECHO94] Mechoso, C. R., Farrara, J. D., Spahr, J. A., “Achieving Superlinear Speedup on a Heterogeneous, Distributed System,” Parallel and Distributed Technology, Vol. 2, No. 2, IEEE CS Press, Los Alamitos, California, USA, Summer ‘94, pp. 57-61.
CONCLUSIONS

Performance increase one or two orders of magnitude

Possible superlinear speedups

Currently: Scientific applications

Commercial possibilities: Multimedia
A New Taxonomy of Heterogeneous Computing (EM3)

Conventional Criterion:

Manifestation of heterogeneity
(Temporal or Spatial)

Conventional classes:

Mixed-mode
Mixed-machine

Proposed criteria:

The number of execution modes (EM)
The number of machine models (MM)

Proposed classes:

SESM
SEMM (NohW, etc. ...)
MESM (mixed-mode)
MEMM (mixed-machine)

Reference:

Ekmecic, I., Tartalja, I., Milutinovic, V., "A Contribution to Taxonomy of Heterogeneous Computing Systems",
IEEE COMPUTER, 1995 (to be published).
��
�
�
�

Ekmečić, Tartalja, and Milutinović

Heterogeneous Processing: Concepts and Systems

IFACT

IFACT

Ekmečić, Tartalja, and Milutinović

Heterogeneous Processing: Concepts and Systems

IFACT

IFACT

