Media Caching

Major scenaria of importance:

1.
Proxy server caching
Intelligent algorithms for selective default caching:
To cache or not to cache - the question is now!

2.
Demand video caching
Intelligent algorithms for selective default prefetch:
To prefetch—if, what, and when!

[image: image1.wmf]Î

3.
Virtual, Inc.:
An industry entrepreneur in the EBI aspect of the research:

Proxy Caching and Prefetching

Dejan Petković

Email: dwecci@sezampro.yu
URL: http://galeb.etf.bg.ac.yu/~dejan

Veljko Milutinović

Email: vm@etf.bg.ac.yu
URL: http://galeb.etf.bg.ac.yu/~vm

Traditional Proxy Servers

An add-on to WWW servers to provide caching and security
(a part of WWW server)

References:

WWW cache related articles, papers, and reports:
http://cache.kaist.ac.kr/docs/related.html

WWW cache related links:
http://w3cache.icm.edu.pl/links/software.html

The Cache Now!
Campaign is designed to increase the awareness and use of proxy cache on the Web:
http://vancouver-webpages.com/CacheNow/

[image: image2.wmf]Client(s)

Server

Proxy

Proxy caching
Topics of Interest

· Introduction

· Client – Proxy – Server architecture

· Caching

Hierarchical caching (client, proxy(c), proxy(i), proxy(s), server)

Transport characteristics

Cache characteristics

[image: image3.wmf]Client(s)

Server

Proxy

Internal

Latency

External

Latency

Removal policy

Coherence

Implementation

Proxy configuring

· Prefetching

Prefetching in theory and practice:

active and passive prefetching

· Statistics

· Future trends

Client – Proxy – Server Architecture

Problems with traditional client-server architectures:

(a) Server overload and protection;

(b) Network congestion;

(c) Long response times.

[image: image4.wmf][image: image5.wmf]
Proxy services:

(a) Firewall

(b) Caching

(c) Prefetching

Proxy forms:

· Server

· Client

· Intermediate

Cache stores a local copy of the requested object:

(a) Reducing hits to a server,

(b) Reducing the number of bytes over the Internet,

(c) Reducing time that users wait for an object to load.

Prefetching:
storing the local copy
of "not-yet-but-probably-soon" requested object, reducing the latencies.

Hierarchical caching

[image: image6.wmf]rti7020.etf.bg.ac.yu

proxy.etf.bg.ac.yu

rti7001.etf.bg.ac.yu

rti70xx.etf.bg.ac.yu

etf.bg.ac.yu

Internet

Internet

proxy2.etf.bg.ac.yu

[image: image7.wmf]Client

Server

Proxy

Request

Response

Request

Response

Client cache - built into a Web browser:

· Persistent - retains its documents
between two invocations of the Web browser
(e.g., Netscape Navigator);

· Non-persistent - deallocates any memory or disk used for caching when the user quits the browser
(e.g., Mosaic).

Proxy cache is located on a machine
on the path from multiple clients to multiple servers.

Parent: proxy (rti7020
Peers: proxy (proxy2

Prefetch: local or server hinted

Transport characteristics

· Volume of an object
(Information on server)

· Internal transfer rate
(Could be estimated)

· External transfer rate
(Could be estimated)

· Probability of future access to the same object

[image: image8.wmf]Client(s)

Server

Proxy

[image: image9.png]
Cache characteristics

· Limited storage space
(Removal policy

· Limited disk I/O throughput
(Limited number of connections

Removal policy

· Caching policy - what should be cached (html, gif,...)
and what should not (audio, video, queries, long files, dynamic docs).

· Removal policy - what should be removed and when.

· Removal algorithm sorts the cached objects by one or more keys
and removes them in order.

· Replacement - removal on demand.

Proposed algorithms:

First in first out sorts objects by the cache entering time (CET)
and removes those with the smallest CET.

Least recently used sorts objects by last access time (LAT)
and removes those with the smallest LAT.

Least frequently used sorts objects by number of references (NR)
and removes those with the smallest NR.

LRU-MIN tests whether there are any documents equal or larger in size;
if there is, removes one of them by LRU:
otherwise, considers all documents larger than half the size of incoming document;
if there is, removes one of them by LRU.

LRU-THOLD is identical to LRU,
except that no document larger than a threshold size is cached.
(Even if the cache has room, a document whose size is larger than the threshold is never cached.)

Hyper-G sorts objects by the number of references (NR) as a primary key,
LAT as a secondary key, and Size as a tertiary key.

Pitkow-Recker determines the relationship
between the number of document requests during a period (called the window)
and the probability of access on a subsequent day (called the pane).

Space Working Set removes the largest file in the cache.

Space-Time Working Set excludes the document
with the largest product of time since last access and byte size (size(time).

Space-Time Product removes the document with the greatest size((timey)
where y is a parameter close to 1 (suggested 1.4).

Space-Time-Cost Working Set removes the file with the highest Size∙Time/Cost, where Size is the byte size,
Time is the time since last access, and
Cost is the time needed to fetch the document.

CERN httpd3 takes into account the age of a document, time since last access, expiration date, network delay, and byte size. Each of these factors changes
linearly from 0 to 1 according to the formula:

attribute_factor=1-(document_attribute)/(max_attribute)

The worth of a document is the product of all five factors.
The max_attribute is usually set in the configuration file.

Bolot-Hoschka proposed two weighting functions:

W(ti, Si, rtti, ttli) = w3/ti
W(ti, Si, rtti, ttli) = w1(rtti+w2(Si+(w3+w4(Si)/ti
W1, W2, W3, W4 - Weights

ti
-
The time since the document was last referenced

Si
-
The size of the document

rtti
-
The time it took to retrieve the document

ttli
-
The time to live

Latency-based Removal (LAT) selects for replacement the object i
with the smallest download time estimated, denoted di:

di = clatser(i) + si/cbwser(i).

Hybrid Removal (HYB) selects for replacement the object i
with the lowest value of the following expression:
(clatser(i) +WB/cbwser(i))(nrefiWN)/si,

clatj
-
Estimated latency

cbwj
-
Estimated bandwidth of the connection (in bytes/second)

si
-
The object's size

nrefi
-
Number of references to the object i since it last entered the cache

WB, WN
-
Constants that set the relative importance of the variables

Removal policy could be run:

· On demand - when the size of requested object exceeds free room in a cache

· Periodically - every T units.

· Both, periodically, and on demand (Pitkow-Recker)

Coherence

Web browsers can be configured to validate their caches
every time an object is requested, one per session, or never.

Proxy cache coherence maintenance based on:

· Explicit document’s expiry date;

· Predicted document’s expiry date (based on last docs validation or request);

· “Staleness threshold” calculated by proxy cache manager;

· Periodical validation;

· User’s demand.

Implementation

Some popular proxies: Squid, Netscape proxy server, WinGate,…

The most employed algorithm: LRU, removal policy runs on demand.

Proxy configuring

Squid - configuration file, read on start-up (disk space, LRU High/Low marks).

WinGate - program GateKeeper for dialog based configuring.

Prefetching

· Local - clients (browsers, proxy)
use local information (e.g., access patterns)
to determine which objects to prefetch.
Prefetch policy:

· Administrator hinted

· Images

· Referenced documents

· Objects found in the access list

· Server hinted - clients use information
provided by server to determine prefetch.
Server tracks access patterns
and information about object to suggest prefetch.

Statistics

External latency: 80%

Cache with unlimited storage:

Total latency reduction: 24%

Hit rate: 50-55% (30-50% in practice)

Prefetching:

Local - total latency reduction: 41%

Server hinted - total latency reduction: 57%

Weighed hit rate: 5-10% less than hit rate.

Future trends

Advanced Caching

Subject recognition,

Spatial locality (server hinted and client estimated),

Prefetching based on spatial and temporal locality.

Virtual Proxy Servers

[image: image10.wmf]1

1

ST

2

ST

1

SW

k

A middle layer between WWW servers and browsers of clients,
responsible not only for caching and security,
but also for search, indexing, filtering, profiling, agenting...

3+3

References:

Pitkow, Recker. “A Simple Yet Robust Caching Algorithm Based on Dynamic Access Patterns”,
Proceedings of the Second World Wide Web Conference '94:Mosaic and the Web,
http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/DDay/pitkow/caching.html.

Williams, Abrams, Standridge, Abdulla, Fox, "Removal Policies in Network Caches for World-Wide Web Documents," http://www.acm.org/sigcomm/sigcomm96/papers/williams.html.

Roland P. Wooster, Marc Abrams, "Proxy Caching that Estimates Page Load Delays", WWW6, April 1997, pp. 325-334
URL: http://www.cs.vt.edu/~chitra/docs/www6r./

Partl, Dingle “A Comparison of WWW Caching Algorithm Efficiency”, http://webcache.ms.mff.cuni.cz:8080/paper/paper.html.

Wu, Liao “Virtual Proxy Servers for WWW and Inteligent Agents on Internet”, Proceedings of the HCSS-97,
Maui, Hawai’I, USA, January 1997, pp. 200-209.

V. N. Padmanabhan, J. C. Mogul, "Using Predictive Prefetching to Improve World Wide Web Latency," ACM
Computer Communication Review, pp. 22-36, vol. 27, no. 3, July 1996. http://daedalus.cs.berkeley.edu/publications/ccr-july96.ps.gz.

Ken-ichi Chinen, Suguru Yamaguchi, “An Interactive Prefetching Proxy Server for Improvement of WWW Latency”.

Hiroyuki Inoue, Kanchana Kanchanasut, Suguru Yamaguchi “An Adaptive WWW Cache Mechanism in the AI3Network”
http://www.isoc.org/isoc/whatis/conferences/inet/97/proceedings/A1/A1_2.HTM.

Gihan V.Dias, Graham Cope and Ravi Wijayaratne, "A Smart Internet Caching System," INET96 Conference,
http://www.isoc.org/isoc/whatis/conferences/inet/96/proceedings/a4/a4_3.htm.

Jeffrey C Mogul, “Hinted Caching in the Web”.

"Squid Internet Object Cache," http://squid.nlanr.net/.

Cache Consistency in the WWW

· Network infrastructure does not grow exponentially;

network load does grow exponentially.

Consequently, latency of accessing WWW documents increases.

· Client-side WWW caches reduce:

(a) Network traffic between clients and servers

(b) Load on WWW servers

(c) Average user-perceived latency of doc retrieval

· Copies must be updated/invalidated when originals change

(a) Weak consistency:

A stale doc might be returned to the user

(b) Strong consistency:

No stale copy will ever be returned to the user

Cache Consistency: A Multi-Dimensional Problem

· In computer architecture (SMP+DSM)

Issue:

Multiple writers to a data item (WWW: MRSW)

Limitations:
CPU and storage overheads (WWW: Internet bandwidth)

· In distributed databases
Polling = Validity check

Invalidation = Change notification

Issue:

Transactional guaranties over a set of data accesses,

in the presence of caches (WWW: Simpler problem)

Limitations:
Complex interface (WWW: Primitive interface)

· In distributed file systems
TTL≈NFS

Polling-every-time ≈ SPRITE

Invalidations ≈ AFS

Issue:

Most similar to WWW

Limitations:
WWW is orders of magnitude bigger

Cache Consistency Related Mechanisms in HTTP:

· TTL field
Each URL has a time-to-live field.

An a priori estimate on how long the document remains unchanged.

· IMS request
Each client can send an if-modified-since request to the server,

which includes URL and TIMESTAMP.

Upon request, server checks weather the document has been changed.

Status code 200 plus data, if modified.

Status code 304, if unmodified.

Operation of Existing WWW Caches:

· TTL approach

A cached copy is considered valid until its TTL expires

(although changes before TTL expires are possible).

The next request triggers an IMS message.

· Client polling approach

Sending an IMS message each time.

Assigning an Appropriate TTL to a Document:

· If too small,

too many IMS messages, even if doc not changed.

· If too large,

probability increases that the user will get a stale copy,

although TTL did not expire

Major Approaches: Adaptive TTL (Alex Protocol)

· Current age (CurAge) = Current time – last modified time

· Document’s TTL is adjusted

based on observation of its lifetime.

· Enabled by the fact that lifetime distributions are bimodal
(if not modified for long time – tends to stay unchanged).

· Upon caching a document, cache manager assigns TTL attribute
which is a percentage of document’s CurAge.

Major Approaches: PET (Polling-Every-Time)

· An IMS request is sent each time a doc is found in cache.

· Easily implementable in the existing HTTP.

Can be selected in the Netscape browser.

· Drawback: User waits the network roundtrip latency
on each and every document retrieval,

even though the document is cached.

Major Approaches: IV (Invalidation)

· Server keeps track of all cached documents.

· Server sends out invalidation when a file is modified.

· Upon receiving the invalidation message,

cache deletes its copy of the documents,

but does not retrieve a new copy.

· Advantage:

Eliminating the stale copy problem

(subject to network connectivity).

· Disadvantage:

The HTTP of 1999 does not include invalidation messages

(must be synthetized).

Message Counts for the Major Consistency Approaches:

Messages
Polling-Every-Time
Invalidation
Adaptive TTL

“Get” Requests
1
RI
1

If-Modified_Since
R-1
0
TTL-missed - 1

304 replies
R-RI
0
TTL-missed - TTL-missed-and-new-doc

Invalidation
0
RI
0

Total Control Msg
2R-RI
2RI
2TTL-missed - TTL-missed-and-new-doc

File Transfers
RI
RI
RI-stale-hit-intervals

· R = Total number of requests

· RI = Interval of requests with
 no intervening modifications

Which Approach Works the Best?

· Approaches that provide strong consistency:

(a) PET (Polling-every-time)

(b) IV (Invalidation)

· Approaches that provide weak consistency:

(a) TTL (not practical)

(b) Adaptive TTL (the best one among weak approaches)

· Conclusions of Cao+Lin {cao, chengjie}@cs.wisc.edu

(a) Weak protocols save network bandwidth

at the expense of returning stale docs to users.

(b) Comparison of PET and IV

depends on frequency of doc requests/modifications.

Typically, IV better,
since PET results in more control messages,
higher server workloads, and longer client response times.

Implementation Tools:

· Harrest (http://www.cs.wisc.edu/~cao/icache)

· CERN Proxy (supports TTL)

· Netscape (client caching is an option)

· Internet Explorer (client caching is an option)

References:

[1]
Cao, P., Liu, C., “Maintaining Strong Cache Consistency in the WWW,”
IEEE Transactions on Computers, April 1998, pp. 445-457.

[2]
Gwertzman, J., Seltzer, M., “WWW Cache Consistency,”

Proceedings of the 1996 USENIX Technical Conference,

San Diego, California, January 1996.

Drawback of Most Tools: Consistency in Presence of Failures

· PET informs the user of failure,

and offers the option of using the stale copy in cache.

· IV provides stale documents for an extended period of time,

without knowing it.

Important Research Topics:

· What if the modified portion is not needed?

· How to fight against failures?

· What is the best, if anti-failure constructs incorporated?

To Cache or Not To Cache – That is the Question!

· In mobile environments,

mobile users (palmtops, notebooks, PDAs, ...)

are/will be having access to a large number of databases,

via wireless networks.

· Market estimated at billions $/annualy,

in access and comm charges.

· Due to limited bandwidth,

wireless communications more expensive than wired.

· Consequently, it is important that mobile users access info in a way which minimizes comm costs.

This means caching!

However, is caching always useful?

Rationales Pro/Contra Caching

· If user frequently reads data item X,

and X is updated infrequently,

then it is useful for the user to allocate a copy of X

to her/his mobile computer.

· If a copy allocated to the mobile computer,

the user automatically subscribes to receiving updates of X.

· Possible allocation schemes:

1-copy (only stationary computer holds data)

2-copies (both stationary and mobile)

· Allocation method
determines weather allocation scheme changes over time.

Static versus Dynamic Allocation Methods

· Static:

Scheme does NOT change over time

Dynamic:
It DOES change over time

· A typical dynamic allocation method:

Change from ST1 to ST2 (STn)

as a result of a smaller number of Ws than Rs,

in the sliding window of K W/R requests,

and vice versa.

· Important: For every R or W,

the last K requests are examined,

and the # Rs is compared to the # Ws.

· Algorithms are distributed:

Software residing both on the static and the mobile computers.

What is better: Static ST1, static ST2, or dynamic window K (SWk)?

· Allocation method should be chosen
to minimize expected cost,

provided appropriate bound to the worst case behavior.

· Conclusions depend on the cost model:
(a) Connection model (cellular phones) – charging per connection time

(b) Message model (packet radio) – charging per message

Results:

· Assumptions:

(1) Reads at mobile computer issued according to Poisson,

with λr reads per time unit.

(2) Writes at stationary computer also follow Poisson,

with λw writes per time unit.

(3) Parameter θ = λw /(λr + λw)

(4) Parameter αk is probability that majority of K

consecutive requests are reads;

of interest for the connection model.

(5) Parameter ω is the cost of a control message

ω
[image: image19.wmf]1

1

ST

2

ST

1

SW

k

 [0,1].

Superiority Coverage:

[image: image11.wmf][image: image12.png][image: image13.wmf]Client

Server

Proxy

Request

Response

Request

Response

· Reasonable compromise: K = 15

· Results for the two cost models are similar

· References:

Alonso, R., Ganguly, S., “Query Optimization for Energy Efficiency in Mobile Environments,” Proceedings of the 1993 International Workshop on Foundations of Models and Languages for Data and Objects,” Aigen, Austria, 1993.

Sistla, P., Wolfson, O., Huang, Y.,
“Minimization of Communication Cost Through Caching in Mobile Environments,” IEEE Transactions on PDS, April 1998, pp. 378-390.

WWW CC Maintenance on the Object Level

· Cache consistency on WWW can be maintained on

page, file, or object levels.

· The callback-read procedure guaranties

that copies of objects in client caches are valid,

so clients can read cached objects w/o server intervention.

· An object is considered locally cached

if its containing page/s is/are cached,

and the object is marked available;

otherwise, client must request the object from server.

· In order to update an object,

client must request write permission from server.

It is granted after the requested object is locked,

at the server exclusively,

and all cached copies (except one) are invalidated.

· The above is possible because server maintains a copy table.

Adaptive Locking

· Adaptive locking reduces the number of write requests
sent from clients to the server.

Adaptive page lock gives a transaction the server permission

to update any object in the page

w/o any further server intervention.

If conflicts detected – switching back to lower granularity locking!

· Reference:

Zaharioudakis, M., Carey, M.,
“Hierarchical, Adaptive Cache Consistency in a Page Server OODBMS,”
IEEE Transactions on Computers, April 1998, pp. 427 - 444.

Research at UB/IFACT

Two major research domains:

1.
Algorithms
Exploiting spatial and temporal locality,
using past behavior and future correlation [Milutinović97]

2.
Tools
Efficient kernel modifications,
to enable experimenting with various algorithms.

Acknowledgments:
Vladan Dugarić
Dejan Petković

Exploring Spatial and Temporal Locality
in HTML Documents

Traditional caching

· Based on temporal locality (LRU, LFU);

· Hierarchical organization (proxy hierarchy).

Problems:

· Hits in lower levels of the hierarchy hide the hits in higher levels;

· Access to some objects dependent on access to some other objects.

Existing solutions:

Access patterns analyzed on a server side
(suggested caching and prefetching.

Problem:

Server analyzes accesses only to local documents.
New protocols required.

Proposed solution:

To analyze fetched HTML documents and to track multiple references to objects.
Reference: pointer within the current HTML object to some other object.

Objects with more references in the current set of fetched documents
have higher probability of a repeated access in the relatively near future.

Objects with more accessed references in the current set of fetched documents
have higher probability of being accessed sooner then the referenced documents.

Problem:

Parsing takes CPU time (CPU used for proxy caching 5-10%).
Takes disk space for building tree structure.

Expected improvement in all levels of cache hierarchy.
Thesis research of Dejan Petković...

[image: image14.wmf]rti7020.etf.bg.ac.yu

proxy.etf.bg.ac.yu

rti7001.etf.bg.ac.yu

rti70xx.etf.bg.ac.yu

etf.bg.ac.yu

Internet

Internet

proxy2.etf.bg.ac.yu

[image: image15.wmf]Client(s)

Server

Proxy

Internal

Latency

External

Latency

Example:

· Two documents that share the same GIF
with equal probability of access p.

· Browser fetches in the following order:
Doc1.html, Gif1.gif, Doc2.html.

· Picture is fetched only once.

· Probability of fetching GIF is 2∙p
· The LRU, LFU, FIFO removal in the following in order:
Doc1.html, Gif1.gif, Doc2.html.

· If one estimates probability considering the number of references to each object, the removal order could be Doc1.html, Doc2.html, and then Gif1.gif,
giving more chances to Gif1.gif.

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

Latencies

� EMBED MS_ClipArt_Gallery ���

� EMBED Visio.Drawing.5 ���

Cache hierarchy at the School of Electrical Engineering

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

System data flow

� EMBED Visio.Drawing.5 ���

� EMBED CorelPhotoPaint.Image.7 \s ���

ω

θ

� EMBED Visio.Drawing.5 ���

[image: image16.wmf]Client(s)

Server

Proxy

[image: image17.wmf]Client(s)

Server

Proxy

[image: image18.png]_954502437.vsd
Client(s)�

Server�

Proxy�

_954577853.bin

_978802095.unknown

_979048916.vsd
1�

1�

ST�

2�

ST�

1�

SW�

k�

_954502603.vsd
Client(s)�

Server�

Proxy�

_954009010.vsd
Client(s)�

Server�

Proxy�

�

�

Internal Latency�

External Latency�

_954247120.vsd

_954262543.vsd
proxy2.etf.bg.ac.yu�

Internet�

rti7020.etf.bg.ac.yu�

proxy.etf.bg.ac.yu�

rti7001.etf.bg.ac.yu�

rti70xx.etf.bg.ac.yu�

etf.bg.ac.yu�

Internet�

�

_940761543

_953992240.vsd
Client�

Server�

Proxy�

�

Request�

Response�

Request�

Response�

