254
Mastering E-Business Infrastructure
253
Denial of Service Attacks: Methods, Tools, Defenses

Chapter 5
Denial of Service Attacks: Methods, Tools, Defenses*
This chapter will provide some basic introduction to Denial of Service attacks (DoS attacks). We will start with explanation of DoS attacks and all of its variations. Later on, we will focus on a subclass of DoS attacks – the ones committed from outside of victim’s system. In order to give good overview of DoS attacks, we will start with some of obsolete types of attack and show how the attacks have evolved: from simple tools to complex distributed systems. At the end of this chapter, reader will be able to see some defenses and some more general advices on how to improve organization of network staff in order to minimize the damage done by this kind of attack.

5.1. Introduction

Denial of Service attack is every attack whose goal is to deny access to a resource or a service. This can be done in various ways:

· Physical destruction of equipment: although this sounds odd, it is not so unusual. In most cases it happens accidentally not deliberately and the most typical way is cable cutting.

· Alteration of configuration information: This kind of attack requires that attacker has root access. By altering configuration information, the attacker can deny some service to some clients.

· Internal denial of service. This requires that the attacker has some sort of account, and due to some weakness in operating system, the attacker can crash certain processes, take large amount of memory or do anything else that can lead to denial of service to some clients.

· Consumption of limited resources:

· Connectivity: the number of connections some system can serve can be a problem even in the case of ordinary workload. In the case that the attacker starts creating false connections to the system, situation can become quite dramatic. Consider the case of a DBMS. It is normal that price of a DBMS goes up with the number of concurrent clients it can serve. So, when buying a DBMS, everyone will carefully consider its needs and buy the appropriate DBMS. Furthermore, it is very common practice to use pooling or some similar technique to increase logical number of concurrent clients and yet to remain in limits of the DBMS. In this case, attack where the attacker takes connections and does not return them back can be devastating because of relatively small number of connections. Once taken, the connections can be hold for as long as the attacker wants and other legitimate clients cannot get them. The only good point here is that the attacker cannot make a connection to DBMS so easily. More usual way is to make a huge number of false TCP connection requests, but more details of this technique will be presented later.

· Bandwidth consumption is another possibility for the attacker. Consumption can be total, when all users notice that system is totally inaccessible (or data transfer with the system is so slow that it is not possible to work with it), or partial when users notice significant slowdown, but they can still work with the system.

This chapter will focus onto one specific subclass of DoS attacks:

· The ones committed from outside of a system. We find them very dangerous, since your system can become victim despite the fact that no one has made intrusion in it.

· The ones oriented towards web servers.

These mentioned features actually represent what is commonly thought to be a DoS attack.

Lately, there have not been large-scale DoS attacks, but that does not mean that we can sit still and believe that DoS attacks don’t exist. By [Moore00] there are more than four thousand attacks each week on the Internet. Or, if we put it another way, it’s around 210000 DoS attacks on yearly basis. Confirmation that this is big problem came from [CSI00], research done by FBI, that showed that around 27% of security professionals detected DoS attacks against their systems.

Most of those attacks have small intensity and do not attract much of attention. But when well-organized attack happens, it can have noticeable affect to the whole Internet. In February 2000, several large sites were attacked (Yahoo, CNN, Amazon, Buy.com, E*Trade.com) and not that only their sites were heavily affected, but the whole Internet suffered slowdown because of that. (Figure 5.1) Attackers used large amount of traffic to commit DoS attack against the sites. In one moment, traffic going to Buy.com site was approximately 800Mb/s and their links were around 100Mb/s.

5.2. [image: image1.png]

Methods of Attacks

It is absolutely logical that an attacker will use someone else’s system and account for attacks and not his own. In that way, if the attacker is tracked down, it cannot be identified. Same goes for DoS attacks, the only difference is that for successfully committing a DoS attack, the attacker needs hundreds and thousands of systems to which the attacker can control.

In order to gain control over some system, attackers are using different known weaknesses of systems. These weaknesses are usually in operating system or in web server and provide possibility for attacker to gain root level privileges.
The weaknesses the attackers use are publicly known and in most cases, patches are available, or at least partial solutions until the patch is available. But, the time is needed for users of affected systems to apply the patch. In the worst case, users do not pay attention to security issues and are not even trying to fix their systems. This gives the attackers plenty of vulnerable systems to compromise.

For the attackers who are trying to gain control over systems in order to commit DoS attack there is no importance which system is taken over (they don’t have specific system that are trying to take over) – number of systems is important: the more-the better. To accomplish this goal, attackers are using automated tool, which takes some IP address and then tries to compromise it with several different exploits. In the case that system is not prone to those weaknesses – the tool will try some other system. Experience shows that there will always be quite a number of insecure systems that will become victim of the attacker. After gaining the access to the system, next step is installation of DoS attack tools (that was the reason to make intrusion). Compromised system can be used for compromising other systems, or it can be left “sleeping” – waiting for attacker’s commands.

In the case that in process of intrusion attacker gained root privileges it is very common to install root-kit. Root-kit is tool made to hide the presence of the attacker in system and to provide root access to the attacker. It can hide files, processes, and connections. Often, root kit (or the attacker by hand) hides history files (under Linux used to track what commands have been typed) so that in the case of discovery, it cannot be tracked what the attacker has done. By doing this, the process of discovering intrusion is much more difficult and for less experienced administrator impossible – even in the case that it is noticed unexpected behavior of the system and it is suspected that someone has attacked the system, there will be no simple way to determine the cause of such behavior. One of common receipts used to cure such situation is immediate reinstallation of operating system. This can fix the problem only temporarily, if patches have not been applied and security holes closed. If patches are applied, situation is little bit better, but some problems will remain:

· There is absolutely no way to track down the attacker once the reinstallation is done. On the other hand, attacker was probably using other stolen accounts, so tracking him down requires cooperation of administrators from different networks (sometimes that can be problem)

· After reinstallation, no one can find out how the intrusion happened. So, even if patches are applied, no one can guarantee the right patch (that solves the problem that led to compromising system) is applied.

In the case that your administrator staff does not have skills to find out how the intrusion happened, the best solution would be to ask for professional help. The price may seem high, but it is much lower than lost information or information that leeks out of your network.

5.3. Techniques of attacks

Ping of Death

This is one of first known Denial of Service attacks. Now, it is obsolete, but at the moment it showed up, it was quite dangerous.

The Ping of Death origin was in bad implementation of certain parts of operating systems related to TCP/IP.

From the TCP/IP specification, size of IP packet is limited to 65536 bytes. But on some operating systems, the ping command was able to send larger packets than that. And that was the first error in implementation.

The second error was that most of the systems behaved very unpredictably after receiving such oversized packet. Usually, system would crash or freeze, so reboot was necessary.

Greatest danger that came from the Ping of Death was that with only one packet, system could be crashed. Also, to attack some system was possible without special tools – but simply using the ping command with appropriate parameters. Good side of it was that reason of it was in bad implementation of TCP/IP, so once the implementation was fixed, the Ping of Death was no longer a threat.

Teardrop

Similarly to Ping of Death, Teardrop attack was using bad TCP/IP implementations to crash systems. It can be said that it was a bit more sophisticated, since it required specially written tool. (Ping of Death used operating system command)

The Teardrop was using the possibility that IP packet can be broken during its travel through the network. And, on arrival, parts of IP packet are put back together in one packet.

In order to put those pieces in order, each part of original packet has one offset field that shows distance from the beginning of the original packet.

The Teardrop makes such IP packets that they look like parts of some bigger packet, but their offset fields are formed in such manner that parts are overlapping.

Again, because of bad TCP/IP implementation, when operating system tried to put such parts together, it usually crashed.

Modern operating systems are immune to Teardrop attacks. Those malformed packets are dropped.

SYN Flood

So far, we have seen some of early techniques for Denial of Service attacks. Those early attacks were very dangerous because relatively small amount of traffic could crash some system. Those attacks were very easy to stop – after applying appropriate patch; system would become immune to all future attempts.

The following techniques of attacks require much more resources and time to be successful, but they are no longer easy to stop or prevent.

The SYN flood uses the way the TCP SYN handshake works to attack systems.

TCP SYN handshake consists of three parts, which all must be finished in order to establish TCP connection. Before the handshake starts, some requirements must be fulfilled:

· There is no active connection between observed systems (to precise, instead of systems we should be using sockets, but to keep it simple, we will use system or machine in rest of the text)

· Both of systems agree to connect to each other.

· Both machines have enough resources to service connection.

The handshake has the following steps:

· Requesting side (Client) sends SYN signal to the second side (Server).

· Server responds with SYNACK signal, showing that SYN signal has reached server.

· Client, after receiving the SYNACK signal send ACK to server.

Once the ACK signal reaches the server, connection is established. While the above shown process is in any of three steps, it is said that connection is half-opened. If the server does not receive ACK signal from client after some time, the half-opened connection is dropped.

The SYN flood attack creates lots of half-opened connections. It is done by modifying the first SYN signal by forging the source IP address. Once the server receives such packet it sends the SYNACK to forged address and thus never receives the ACK signal.

Before the discovery of SYN flood attack, it was usual to take fixed part of memory and dedicate it for handling of half-opened connections. Because of that first SYN flood attacks had serious consequences: in all the cases users were unable to connect to attacked system because the system hasn’t enough resources to handle them (no place to keep track of half-opened connection) or rarely, attacked system even crashed.

In order to reduce damage from SYN flood dynamic memory structures were used for holding half-opened connections and timeout was reduced. This helped a bit but some of problems remained:

· Timeout can be reduced only to some, not so small, value. Otherwise, the legitimate user requests would be dropped out, and they could not connect to the system.

· Dynamic memory structures had the possibility to store more half-opened connection data, but the space given for this purpose still had to be limited. Also, if data on half-opened connections is stored in dynamical structures (such as lists) it takes much more time for the server to check whether client has already requested connection or already opened connection (remember, TCP connection can be only established if there is no connection between systems).

The false connection requests are taking some of server’s resources but main damage is made by disabling legitimate users of the attacked system to establish TCP connection (server is too busy with false requests). This type of attack is example of asymmetric attack.

UDP Flood

If the attacker chooses to use bandwidth consumption method, one of the ways to accomplish this is by sending large amount of UDP packets. As it is known, UDP is connectionless protocol. This makes him ideal for the attackers. Since it is connectionless, the source of UDP packets (system owned by the attacker) can remain hidden by spoofing the source address. For instance the TCP flood would not be appropriate for this purpose. TCP first needs connection to be established through the three-step handshake, and only then the attacker can start flooding. This means that the attacker’s system would be identified. Soon after that, the attackers system would be blocked on border routers of the attacked network, which would reduce the impact of the attack. The next step would be to send some kind of notification to administrator of the network from which the attack originates and that would be the end of the attack. All this could be done in relatively small time.

There is one more approach to UDP flooding. It uses two UDP services: echo and chargen.

The attacker connects those two services on two separate systems. It is done by sending request that connects chargen service on first with echo service on second system by spoofing the source address of the request. This creates flow of useless data between two systems. The tricky part here is that usually this does not create total bandwidth consumption but consumes only part of bandwidth. Users of affected systems notice slowdown, but everything seems to be working. So, it can take some time to discover what is happening. Fortunately, solution is very simple: just disallow of those two services – after all they are created only for purposes of network testing, and once this process is finished, there is no need for them.

Smurf flood

Smurf flood is very specific way of attacking, since it uses intermediate networks as amplifiers. Method of attack is bandwidth consumption and because of intermediate networks, this is excellent example of asymmetric attack.

The attacker sends broadcast to intermediate network. The message sent is ICMP_ECHOREQUEST and it has spoofed source address. Instead of real source address, it has address of the victim. Upon arrival in destination network it is broadcasted. It will require of all systems in [image: image2.png]Broadcast

Multiplied
response

network to send ICMP_ECHOREPLY to sender’s address. Sender’s address is spoofed, and all traffic will go to the victim.

It is clear that each request generates multiplied response, and the bigger intermediate network is, the bigger response will be.

Prevention of Smurf flood attack must be done on two sides. Prevention of becoming source of Smurf attack can be to block all ICMP_ECHOREQUEST packets coming from outside of network, and to allow them only when needed. If some network is attacked with flood of ICMP_ECHOREPLY messages, they can be blocked. In the case that this is done as prevention, maybe the best solution would be to allow ICMP_ECHOREPLY messages to be small percent of total traffic. This way, users of network will be able to use this service, and in the case of attack it will not have big impact on network performance.

5.4. Evolution of attacks

All mentioned types of attacks were used solely in early days of DoS attacks. That gave them only limited power, and kept attackers from attacking large sites and well defended networks.

Technology development increased capacity and decreased price of links, so ordinary bandwidth consumption became almost impossible.

Knowledge was collected on DoS attacks, so the network administrators were better prepared for them, and could easier stop them – the attackers could not count on surprise effect.

All this led to improvements in techniques of attack. In the same way administrators prepared to defend from attacks, attackers were preparing new and improving existing techniques of attacks:

· In the case of bandwidth consumption, the attackers discovered that they could create much more damage if sending lots of small packets (even empty – only header) than sending one large packet of the same equivalent size. The border router of the network will have much more business in dealing lots of packets – each has to be analyzed, some of them will be dropped, appropriate ICMP message must be sent, and all that requires time. From attackers point of view, total amount of data sent was the same and impact was much greater.

· In the case of SYN flood attacks, memory dedicated to storing half-opened connections was increased, but then another big problem showed up. In the case of large scale SYN flood attack, number of half-opened connection grows fast. Since TCP standard disallows opening two connections between two same sockets, for every incoming connection request, server has to search through list of already opened connections and through list of half-opened connections. Since these are memory searches, no matter how good optimized they take time, and all this creates processing limit to the server. With ordinary workload this would never be a problem, but in the case of attack it can become serious.

· Use of intermediate systems: attacker creates such packet that will be dropped once it reaches destination. In that packet source address is forged and set to be the IP address of victim system. Stream of such malformed packets is sent to random IP addresses. After the packet arrives at its destination it is dropped and sender is notified about it with appropriate ICMP message. This may seem like an overhead for the attacker – the attacker can forge source address so that originating network could not be found. But, with some effort even such packets can be tracked down. With this intermediate network, the job of finding source of such packets becomes even more difficult and attacker is harder to find.

All this improvements were not a serious threat for any bigger network. The attacker had to control all of its systems by hand, and that limited intensity of attack. The main problem attackers had, was how to control huge number of compromised systems (we have seen earlier that compromising systems is not a big problem). The problem was solved with Distributed Denial of Service (DDoS) attack tools.

DDoS tools are used to control large number of compromised systems organized in hierarchical network. Typical DDoS network has three levels: client, handler, and agent level.

Agent is the lowest layer of DDoS network. Agent systems are directly responsible for flooding. For flooding agents can use any of previously mentioned techniques or even several of them.

Handler is the middle layer. Handler systems are used to control agents based on commands they receive from highest layer – clients.

Client layer is used directly by the attackers. Client is console program that receives commands and communicate with handlers. Communication can be only in one way – from client to handler, or in some cases there can be also communication from handler to client.

Each client controls tens or hundreds of handlers, and each handler can control up to thousands of agents. This gives the attacker opportunity to control from one place, with one click thousands of compromised systems. This has allowed the attackers to commit attacks against large government and commercial sites. During attack, some agents will be discovered and disabled, and that would reduce strength of the attack. The attacker can add new handler, with set of new agents, during the attack and keep the intensity of the attack on high level.

All three levels are protected with passwords by the attacker to make taking over by other attackers or administrators difficult. Sometimes even the communication between layers is encrypted.

This kind of networks can be used to attack any site – the attacker should only give address of targeted network and attack can start.

Sometimes there are different approaches like with Code Red worm. It was using weakness in IIS (Microsoft’s web server) to compromise systems. Compromised system was supposed to search for more vulnerable systems and on specific date to perform Denial of Service attack against site of the White House. Due to some weaknesses in Code Red, its impact was not so dangerous as it could be. Each host was probing almost the same set of host for vulnerabilities and IP address of White House site was hard-coded in Code Red worm. So, the number of infected hosts was not as big as it could be, and by changing IP address of White House site DoS attack was avoided. It is good to know that estimated number of infected hosts was between 250 thousands [CERT01] and 360 thousands [Moore01] The patch for exploited weakness was published one month prior to Code Red attacks and on most of systems were not applied. Even some of Microsoft’s servers dedicated to customer support and patch download were infected too [Lemos01].

Code Red 2 was released one month after original Code Red. It used the same vulnerability but almost everything else was different. Search for new hosts to infect was improved a lot, and instead of attempting DoS attack it created backdoor on infected systems. Saddest of all is that lots of systems were infected, and that administrators did not applied patch after two months and after CR1 made big noise in media.

Source code of DoS attack tools can be found on the Internet with some effort – in a small experiment, we were able to find source code of several attack tools in less than hour, only using Google. In the same way, different exploits can be found also on the Internet, so putting together all needed parts of DDoS tool is much easier than it seems on first look.

There is only one more thing attacker must do after compromising some system – specify links to other layers. This is dependant on implementation of DDoS attack tool.

5.5. Distributed Denial of Service Tools

In order to give complete overview of DoS attacks, we will give short description of several different attack tools. For more details, reader should consult [CERT], [SANS], [Dittrich].

Trinoo

Trinoo is the first DDoS tool. It was the first tool that introduced CLIENT-HANDLER-AGENT logic.

Since it is the first, Trinoo is relatively simple. It uses only UDP flood to attack victims.

TCP is used for communication between clients. Handlers and handlers and agents communicate through UDP packets.

To protect the DDoS network, Trinoo has password protected clients and handlers. Also communication between nodes of network is encrypted. The main weakness is that agent password is sent in plain text format, so by analyzing traffic it can be easily captured.

In the case that Trinoo agent is discovered on a system, it can help in dismantling whole Trinoo network:

· On every agent system, there is a list of handlers that can communicate with that agent. All handler systems from the list should be contacted and notified of existence of Trinoo.

· Handler systems have list of agents, so all other agent systems should be warned. Also, because TCP is used for communication between handler and client, in the case that attacker is connected to the handler system, it can be tracked down.

TFN/TFN2K

TFN stands for Tribal Flood Network. It was created after Trinoo, and it is much more sophisticated.

First improvement is that TFN can launch different types of attack: ICMP flood, UDP flood, SYN flood and Smurf flood.

Like with all DDoS tools, client is console program, and it even has primitive help that lists all commands.

One mayor improvement in TFN is that for communication between handler to agent are used ICMP_ECHOREPLY messages that will pass border routers without rising attention – it would seem that some system in network receives reply to ICMP_ECHOREQUEST. That is much better than UDP packets.

In some versions of TFN, similar to Trinoo, on handler systems can be found list of agents that is not encrypted which can help in destroying the TFN network.

TFN2K is advanced version of TFN and it is even more dangerous. Whole TFN2K network is much more difficult to detect.

That is because agent in TFN2K network only listens for commands that are coming from handler. To be sure that commands are reaching agent, handler sends same command several times.

Stacheldraht

This tool is pretty much like TFN in its features – it can attack using UDP, SYN, ICMP or Smurf flood attack.

Interesting about Stacheldraht is that it includes automatic update of agents. That helps the attacker in upgrading the network because it eliminates the hardest part – update of agents. There are very few client systems, and number of handlers can be measured in tens or hundreds, and that can be done relatively easy without this automatic update feature.

However, it is not known how much this feature is used in real life. Because, if used frequently, it could possibly lead to detection of Stacheldraht network simply by listening on ports used for that purpose.

5.6. Defenses

Finally, we have come to part of this chapter where we can see how to defend from this kind of attacks. Unfortunately, so far no one has found magical cure that can easily help in the case of any kind of attack.

Some things can be done to reduce impact of the attack, but most of work must be done on the spot and requires lost of knowledge. We will give some advices, trying to be as general as possible, but one advice will be repeated over and over: educate, train and invest in your staff. Good staff can help you with variety of problems, not only with DoS attacks.

Prevention is probably the best way to fight. It can be done in two ways:

· Prevention of becoming source of attack. It is important because your users can experience some problems in the case that your system is used for attacks.

· Prevention of becoming direct victim of attack. Basically, for this scenario, you can only organize people and determine responsibilities.

Prevention of becoming source of attack

Border routers should be configured to drop following packets:

· Packets that are coming to your network from outside and have source address of your network. The packet with both source and destination address of your network could not exit your network to return at some point, so this is illegal behavior. This can prevent Smurf attacks.

· Packets that are going outside of network and have source address that does not belong to the network. This indicates that someone is misusing some system in the network. Also, if spoofed packets cannot exit network, it will be less interesting for attackers.

 Information on these packets should be logged. The first case, it indicates that someone is maybe attacking your network or trying to use it to attack some other network. But in the second case, it is highly likely that some of systems in the network are compromised and used for attacks on other networks. In this case reaction must be fast, and it can lead to catching the intruder.

Unsolicited ICMP_ECHOREPLY messages should be logged too. Reason for their occurrence could be presence of active DDoS tools on some of systems in network.

Echo and chargen services should be disabled. Or even better, all unused UDP ports should be disabled. Those that are used should be monitored for signs of misuse.

To prevent intrusion in your network, the following should be done:

· All systems in network should be patched when needed – meaning as soon as patch for the system is available. According to [HONEY01] “the life expectancy of a default installation of Red Hat 6.2 server to be less than 72 hours”, and the fastest time some system was compromised was 15 minutes. For default Windows98 installation life expectancy was less than 24 hours. The systems used in those tests were put on the Internet in default configuration, without any patches applied. This example shows that systems “out of box” are quite insecure and can be compromised easily. With frequent updates, system can be made much more resistant – at least to commonly used weaknesses.

· Good practice should be to keep track of made updates and applied patches. After some time it can be difficult to know which patch was applied on some system, or whether some old patch solves some new weakness.

· Sometimes getting information whether some new weakness of systems exist can be time consuming. Probably the best way to be informed properly is to follow security bulletins such as [CERT], [SANS], or some other of your choice.

· Logs should be checked for signs of intrusion. However, if there is no information in logs that does not mean that your systems were not compromised – some of widely used weaknesses leave no data in logs. Or, logs can be cleaned after successful intrusion.

· Tools as Tripwire should be used to create cryptographic hashes of the most important files in the system. Periodically compare current state of the system with created hashes. In the case of difference try to find out what happened.

· Train your staff – both administrators and users. Administrators need to have enough of knowledge to solve any problem that can occur. On the other hand, no matter how good your administrators are and how good your systems are protected, that can all fall if users do not understand and follow security rules. In summer of 2002, ForensicTec Solutions Inc., security company had discovered that some of US military computers are vulnerable to attacks made by widely available software [O’Harrow02]. They have been able to read mail, personnel data (names, social numbers, security clearance levels, credit card numbers). Some of users were using their names as passwords, or even word “password”. If such problems exist in military environment, they can be expected in all other environments.

In the case that some system has been compromised, you should do the following:

· Disconnect compromised system from the network. This is essential to do. If system remains connected, it may not be cleaned properly, or attacker can notice that something is happening and start destroying all the data on disks.

· Make backup of all needed data. Do not forget configuration files, but those files should be checked and backed up only if they are clean.

· Reduce use of mail in the network – attacker could be reading it. Do not use mail at all for communication regarded to intrusion.

· Determine problem. Find out what has lead to intrusion. To do this you should have clean version of operating system with appropriate tools. Good choice could be to have CD with all needed files. CD-ROM is in common use, and it is ROM so files on it cannot be changed.

· Check similar systems in the network (by operating system or by software those systems are running) since those systems could be also compromised. Generally, it is good practice to check all of the systems in the network, because attacker was maybe using compromised system to attack all other systems in the network.

· Clear system. You may need to format disk(s). Install clean version of operating system. Also, mail, web, ftp, and other servers should be reinstalled too.

· Bring back data from backups. This must be done carefully.

· Change all passwords on the system. The attacker may have been using sniffer to capture passwords in plain text format so even after system is cleaned attacker can have access to the system.

Preparations to defend from an attack

In order to be prepared in the case that your network gets attacked, you should do the following:

· Establish good business relationship with ISP. In your contract should be specified responsibilities of ISP in the case that your network is attacked. ISP responsibilities should be blocking traffic and tracking down attacker packets.

· Check if your insurance policy covers the case that your network is attacked with distributed tools.

· Form chain of command in the case of attack. If attack happens, people will know their responsibilities and they will be able to start solving problems immediately without loosing time. Notification of staff that network is under attack and that they are needed should be done by telephone or similar way of communication. Mail is not recommended since mail service could be down too.

· Define spending on security. This may be hard to do, but threats are increasing and investing in security is smart investing.

5.7. Conclusion

So far we have witnessed several large scale Denial of Service attacks against commercial (Yahoo, CNN, Amazon, eBuy.com), government (FBI) and university (University of Minnesota, CERT) networks. In all those cases attacks were successful and lasted up to several days. All those attack were committed from outside of victim’s networks. This is one of main reasons why DoS attacks are considered highly dangerous – despite the fact that your network is secure from intrusions, it can be successfully attacked from other insecure networks.

Danger from attacks is even greater if we look at the impact that was made by February 2000 attacks on whole Internet community. Danger is increasing with increased number of home users with high-speed links (DSL and cable modems) and poor knowledge of security issues.

Research in this area has been made, and it can be said that at one point all contributors agree: the best way to stop Denial of Service attacks is to keep attackers from compromising lots of systems.

5.8. Problems

All exercises that are mentioned in this chapter, must be done on a system that is used only for testing purposes - do not try to attack or modify configuration files on servers already in use.

1. Try to make Ping of Death attack. What happened on both sides (attackers and attacked)?

2. Search the Internet for information on new DoS tools. Try to get source code of some of those tools.

3. In case that source code was obtained, try to understand how it works and try to find some weakness.

4. Make a tool (in programming language of your choice) that will allow you to open TCP connection from specified socket to specified socket. Try to make two connections between same sockets. What happens?

5. Find out how to enable/disable echo and chargen services on your system.

6. Try to block all UDP and TCP ports bellow 255. What services have been lost with this action? Enable all ports below 255 and then block only the unused ones.

7. Check your systems for latest patches and anti-virus updates. In case that some patches are not applied do it yourself, or consult your system administrator.

8. Find out of some new known weaknesses in a operating system, ftp or web server. Collect enough information to attack system that was set up only for that purpose. What happened? In case that you were not able to attack it succesfully, try to find some already made tool, and try with it. What happened now?

9. Check out logs of the system you have tried to attack. Are there some valuable data in them? Were you able to detect the attack and to track down the system from which the attack occured?

10. What are the main advantages (for the attacker) of using DDoS networks?

5.9. Acknowledgement

Thanks to Milan Savić who worked together with us to build tutorial “Denial of Service attacks: Methods, Tools, Defenses”, http://galeb.etf.bg.ac.yu/~vm/tutorial/tutorial.html, which was the base for this chapter. He provided some valuable advices for this chapter, too.

I would like to dedicate my efforts in this book to my parents and espetially to my sisters Jasmina, Dragana and Nina who have provided me support every time I needed it.

Bratislav Milić

5.10. References

[CERT]
“CERT® Coordination Center”, http://www.cert.org
[CERT97]
"CERT® Coordination Center Denial of Service Attacks", http://www.cert.org/tech_tips/denial_of_service.html, CERT, 2001
[CERT01]
"CERT® Advisory CA-2001-19 "Code Red" Worm Exploiting Buffer Overflow In IIS Indexing Service DLL", CERT, 2001
[CSI00]
"Computer Security Institute and Federal Bureau of Investigation. 2000 CSI/FBI Computer Crime and State Security Survey", Computer Security Institute, 2000.

 [Dittrich]
David Dittrich Homepage,

http://www.staff.washington.edu/dittrich
[DSIT]
"Results of the Distributed-Systems Intruder Tools Workshop", CERT® Coordination Center, CERT, 1999

[HONEY01]
Honeynet Project,

http://project.honeynet.org, USA, 2002

[KEY00]
http://www.keynote.com/press/html/00feb12.html, Keynote Systems press release, February 2000

[Lemos01]
Lemos, R., "Virulent worm calls into doubt our ability to protect the Net", CNET News, 2001

[Milić02]
Milić, B., Savić, M., Milutinović, V. “Denial of Service Attacks on the Internet”, E-Business and E-Challenges, IOS Press, Netherlands, 2002

[Moore00]
Moore, D., Voelker, G., Savage, S., "Inferring Internet Denial-of-Service Activity", USA 2000

[Moore01]
Moore, D., "The Spread of the Code-Red Worm", http://www.caida.org/analysis/security/code-red/coderedv2_analysis.xml
[O’Harrow02]
O’Harrow, R., “Sleuths Invade Military PCs With Ease”,

Washington Post, USA, August 2002,

http://online.securityfocus.com/news/581.

[SANS]
SANS Institute,

http://www.sans.org
[SANS99]
“Incident Handling Step by Step: Unix Trojan Programs”,

http://www.sans.org/y2k/DDoS.htm

Figure 5.3	Distributed denial of service network

Legend:	C -client, H - handler, A – agent

	Arrows show the control flow.

Explanation: Control goes from clients to agents through handlers. Notice that control over handlers could be shared between several clients, and control over agents between several handlers. Handler of agent will follow the latest orders.

Implications: Thanks to this kind of organization, the attacker controls hundreds or thousands of systems with only one click.

�

Figure 5.2	Smurf attack

Legend:	A -attacker, R - router, V - victim

Explanation: Attacker sends broadcast ICMP ECHO_REQUEST package to intermediate network. Router broadcasts those packages to all systems in network, which send ICMP ECHO_REPLY packages to victim V.

Implications: Intermediate network works as multiplier for the attacker. In this way, the attacker can overwhelm system with much higher bandwidth than the one used by the attacker.

�

Figure 5.1	Overall Internet performance degradation during February 2000 DoS attacks [KEY00].

Legend:	PPW - Performance in previous week (seconds), �PAW - Performance in attacking week (seconds), �CPW - Change from previous week (percent)

Comment: 	The Keynote Business 40 Internet Performance Index measures the average response time of accessing and downloading the home pages of 40 important business web sites. It is done by T-1 and T-3 links.

Explanation: If we compare times of normal week and of week in which attacks occurred, we can notice significant slowdown because of DoS attacks.

Date�
PPW�
PAW�
CPW�
�
February, 7th�
5.66�
5.98�
5.7% slower�
�
February, 8th�
5.53�
5.96�
7.8% slower�
�
February, 9th�
5.26�
6.67�
26.8% slower�
�
February, 10th�
4.97�
4.86�
2.2% faster�
�

* Prepared by Bratislav Milić (zverko@eunet.yu) and Veljko Milutinović (vm@etf.bg.ac.yu)

