138
Mastering E-Business Implementation

139
Business-to-business (B2B)

Chapter 2
Business to Business (B2B): Challenges and Solutions

In this chapter, an overview of business-to-business electronic commerce and B2B technical solutions is given. The first section discusses business-to-business (B2B) electronic commerce (e-commerce) in general, reasons for B2B, expectations, barriers to B2B and its prospective. The next section describes the Extended Markup Language (XML), data description language used in e-commerce transactions. Following sections introduce two most popular technical solutions for implementing B2B: Microsoft .NET framework and Sun Open Net Environment (ONE) framework. In the last section, an overview of ebXML standard is given.

2.1 Introducing the B2B

One definition says that business-to-business electronic commerce is the process of buying and selling among companies via the Internet [Barker00].

Obviously, this is a process with two parties involved. One party is a provider of products or services and the other is a consumer of those products or services. The important fact is that in this process business transactions involve only organizations, not individuals.

Basically, B2B is buying and selling among businesses.

2.1.1 Why Business-to-Business?

A typical business depends on other businesses for one or more of the direct and indirect inputs to its end products. Therefore, business-to-business electronic commerce is intended to automate and streamline the process of buying and selling of these intermediate products.

The Internet and the World Wide Web seem to be the most appropriate tools to achieve these goals. By using the Internet to collaborate and improve business process efficiencies, customers and business partners, such as suppliers, manufacturers and distributors can reduce the costs of doing business together.

Right now, every third household in USA has Internet access. By the year 2005, Internet use will grow to 1.2 billion users of which 62% will be wireless users. They will conduct over $2.6 trillion a year in commerce over the Internet. That’s over $4.9 million a minute, 24 hours a day, 7 days a week, 365 days a year. Spending on Internet-business projects was growing by more than 10% in year 2002 to reach approximately $240 billion, according to a joint study by consulting firm A.T. Kearney and Line56 Media. Research firm Gartner estimates that worldwide business-to-business revenue will reach almost $6 trillion by 2004, up from $953 billion in 2001, as companies increase their Internet focus.
Business-to-business electronic commerce provides more reliable updating of business data and it makes product information available globally and updates it in real time [Jakovljevic00].

For procurement transactions, buyers and sellers can meet in an electronic marketplace and exchange information. Electronic marketplace is an Internet-based public B2B exchange. Besides public B2B exchanges, there are private exchanges, usually controlled by one company. These exchanges are tightly controlled and mission-specific market solutions.(
2.1.2 E-Commerce: Expectations and Barriers

Electronic commerce includes all forms of business transactions involving both organizations and individuals that are based upon the processing and transmission of digitized data, including text, sound, and visual images. Essentially, electronic commerce is the sharing of business information, maintaining business relationships, and conducting business transactions by means of telecommunication networks.

Electronic commerce is a logical consequence of globalization of world economy, but is also influenced by other factors such as:

· Market pressures to accelerate product development and sale due to shorter product lifecycles

· Increased customer demands

· Narrower profit margins

The growth of electronic commerce is one of the most exciting trends in the information technology world today. It is also a challenge of integration of technology into the existing business practices. There are many expectations from e-commerce, among which the most important ones are increase of business revenues and increase of product margins. Business expectations include also:

· Reducing the cost of sales

· Reducing inventory on hand

· Enhancing just-in-time manufacturing

· Bringing sellers closer to their customers

· Enhancing business partner & supplier relations

· Developing and managing new channels and new, less expensive, ways of doing business

There are two major types of e-commerce: business-to-consumer (B2C) and business-to-business (B2B). The topic of interest in this chapter is business-to-business electronic commerce. The key to a successful e-commerce is high-availability of the network, servers, applications, and data. The e-commerce challenge has two elements:

· Satisfy customers better than competitors can

· Run a superior, technological infrastructure that can support and enhance the e-business potential

The first generation of e-Business focused on navigation and speed. Next generation demands security, reliability, availability, and performance. Barriers to e-commerce in 2000 were:

· Security and encryption

· Trust and risk

· Lack of qualified personnel

· Lack of business models

· Culture

· User authentication and lack of public key infrastructure

· Organization

· Fraud and risk of loss

· Internet/Web is too slow and not dependable

· Legal issues

The most significant barrier to the growth of e-commerce continues to be concerns about security. Top ten global barriers to B2B are:

· Culture

· Organization

· Interoperability between e-commerce applications

· Interoperability with legacy systems

· International trade barriers

· User authentication and lack of public key infrastructure

· Lack of qualified personnel

· Lack of standards

· Interoperability with e-commerce sites of complementary companies

· Partner e-commerce readiness

· Executive awareness

2.1.3 Business-to-Business Frameworks

and Interoperability

Business-to-business involves engineering the interactions of diverse, complex enterprises. All services and resources on the Web are treated as business objects that can be combined in novel ways to build virtual companies, markets, and trading communities. A business can be viewed as a set of processes. A process can be anything from work order generation to human resources development. Company planners capture business processes in models and implement them as enterprise applications. The trend has been to include more and more outside entities such as customers and suppliers in process engineering. The most popular frameworks for B2B are:

· OBI,
· ECo
· RosettaNet
Interoperability is a key issue in B2B. It means that B2B e-commerce system is not dependent on specific hardware products or operating systems environments. Use of accepted standards enables accessibility and usability across different technology platforms. "Interoperability" means the ability of separate systems to be linked together and then operate as if they were a single entity. The data standard for global interoperability is brought through XML (eXtended Markup Language), just as a platform for global connectivity is provided by the Internet.(
2.1.4 E-Marketplace: Intermediary Between

Businesses in B2B

E-Marketplace is considered as one of the most important features of B2B e-commerce and is expected to be a source of substantial efficiencies. On one side we have buyers with their needs and on the other side we have sellers with their items to sell; in the middle we have the marketplace. Marketplace stands there as some middleman whose job is to make everyone as pleased as it is possible. Marketplace can not make everyone happy, but it can reduce the number of discontent buyers, and can, according to Aberdeen Group [Aberdeen00, Sterling01], give opportunity to buyers to expect:

· Decrease of product costs from 5 to 15 percent.

· Decrease in process costs of about 70 percent.

· Decreasing of average process costs from $107, when a product is ordered manually, to $30, if ordered electronically.

· Reduction of 50 to 70 percent in purchase requisition cycle time. This can be achieved if all sections of the processing order from initialization through fulfillment are done by using some electronic solution.

Electronic Marketplace Architecture

Today, it’s necessary to have at least one more side in B2B – electronic marketplace. In order to use e-marketplace, an interface is required both on the side of buyers and the side of sellers. This interface is not complicated to use and it usually consists of different browsers, applications, and some integration tools. The most complicated part of each marketplace is the central part connected with the exchange. The central part may be separated in four basic parts connected with different parts of the exchange. These four parts are:

· Transaction Support

· Content Management

· Supply Chain Management

· Value Added Service

At the end, there has to be a link to other e-marketplaces. This link is an important part of each marketplace, because it connects the marketplace with the rest of the world. On the other e-marketplaces, this link takes role of buyer or seller, depending of how it got there, as representative of buyer or seller side on the first marketplace.

2.1.5 B2B Evolution Continues

By the year 2000, the dot-com bubble has bursted and many e-businesses went bankrupt [Soon00]. Still, most companies never lost sight of the fact that business-to-business Internet technologies play a vital role in streamlining operations, increasing revenue, and reaching new markets. With the dust settled, certain business-to-business trends have emerged as businesses strive to create a competitive advantage, including a greater focus on:

· Technologies that help to boost profitability,

· A shift from public e-marketplaces to private trading exchanges, and

· More emphasis on solutions that promote interoperability between business applications.

So, the Internet business has survived. Let’s see how it will develop further.

Electronic Business Prospective

As stated before, research companies predict worldwide business-to-business revenue increase in the following years. These revenues will come from two specific types of initiatives:

· Back-end projects that target direct relationships with suppliers, distributors, and retailers to improve efficiencies and streamline processes

· External-facing ventures that extend market reach and facilitate inter-mediated transactions

These projects provide businesses with interactive channels for communicating with suppliers, distributors, retailers, and customers using Internet technologies. Business-to-business applications offer a platform to manage multiple channels and reengineer processes for enhanced productivity in procurement, production, and distribution, as well as reduced costs. The B2B market continues to evolve to meet companies’ needs. Certain trends are emerging that promise to fuel continued growth in B2B initiatives. Companies are starting to approach B2B initiatives much more deliberately. Business and IT are collaborating, which drives investment decisions, and companies are analyzing future projects in greater detail to make sure they are in line with company objectives.

Increasing Revenue

The current economic environment has shifted corporate priorities away from creating efficiencies toward increasing revenue and profit contribution.

Increasing revenue is now the top priority for Internet-business projects, followed by gaining competitive advantage and maintaining competitive position. As a result, the focus of new business-to-business projects has shifted to the sell side in the form of customer-relationship management and analytics.

E-marketplace Evolution

During the past two years, Internet-based public B2B exchanges, or e-marketplaces, such as Chemdex and Aluminum.com, emerged in great numbers in almost all industry sectors but disappeared just as swiftly. Others, such as SciQuest, transformed themselves into software service providers, moving their revenue base from transaction fees to software and service sales.

Although public exchanges did not prove as viable, private exchanges and industry-sponsored exchanges have had more success. Private exchanges are usually operated by one company (Dell Computer and Wal-Mart Stores are two examples) and industry-sponsored exchanges such as the automotive industry’s Covisint marketplace, can qualify suppliers to ensure the integrity of the transactions. The key benefits in online markets derive from expanded customer reach, competitive pricing, and technology outsourcing.

Buyer demands for better service and support are transforming e-marketplaces into service-provider outsourcers. While enterprise buyers look for significant cost savings, smaller participants look for improved market reach, service quality, and reliability when they consider online markets.

In short, solution providers that offer better support services to participants will outperform those that focus strictly on technical details. After setting up an e-marketplace, service providers must continue to work side-by-side with users to fully transplant technical solutions into complex processes that involve multiattributed products and multiple vendor choices,” says Thompson.

Indeed, technology might deliver transactional efficiencies, but complex B2B relationships require that intermediaries operating these markets provide value through service and support.

Application Integration

The drive toward interoperability between represents another evolutionary shift. As companies rely more heavily on technology solutions to create efficiencies and expand market opportunities—and as they collaborate with a wider circle of suppliers, service providers, and strategic-alliance partners—they must be able to integrate disparate applications.

The software industry is developing a Web-services framework(that aims to address these needs. Web services are an emerging range of software solutions that help different business applications share information over the Internet.

Web-services providers will play an increasingly important role in software-solution delivery and in enterprise-application integration as they mediate interactions that occur over a network. Web services represent a much anticipated shift in enterprise computing away from internal servers toward a network-based architecture.

2.2 XML: The Data Standard for Electronic Business

Extensible Markup Language (XML) has been a subject of technical conversations for quite some time. XML was developed by an XML Working Group formed under the auspices of the World Wide Web Consortium (W3C) in 1996. XML is a markup language for documents containing structured information. A markup language is a mechanism to identify structures in a document. The XML specification defines a standard way to add markup to documents. XML was created so that richly structured documents could be used over the Web [XML98].

2.2.1 Why XML?

XML technologies bring innovation and interoperability to the document authoring, indexing, and management processes. XML is a text-based metalanguage format for data exchange, it provides a pathway to transfer data easily between dissimilar applications and servers. The only viable alternatives, HTML and SGML, are not practical for this purpose. A simplified version of SGML, XML is a less complicated markup language framework that can be used to develop a customized solution to manage specific information.

Different from Hypertext Markup Language (HTML), XML encapsulates the structured data within a document, but does not include any code related to how the data should be displayed in the user interface. Based upon the simple concept of using tags to describe information so that the data can be easily accessed across any network and between dissimilar applications, XML is referred to as a metalanguage. XML is specifically focused on defining the content of a document, rather than how the data will look. Because of its ability to interoperate with a variety of systems, XML is supported by computing software and hardware companies such as Sun Microsystems, IBM, Oracle, and Microsoft. Document content structured with XML can be delivered over the HTTP protocol as easily as HTML.

2.2.2 The XML Promise: Design Goals

XML is here along with the customary hype [Spiteri00], and its usage is increasing, followed by significant support from the software industry and growing interest from within the user community.

Its promise is that, like the Internet, it will be accessible to a global audience of varying means and not only to large corporations with hefty information technology budgets. Looking at some of the design goals for XML gives insight into what its authors were thinking relative to this point:

· XML shall be straightforwardly usable over the Internet

· XML documents shall be easy to create

· XML documents should be human-legible and reasonably clear

· It shall be easy to write programs which process XML documents

· XML shall support a wide variety of applications

2.2.3 The Predecessor of XML

Businesses conduct e-commerce transactions through standards such as Electronic Data Interchange (EDI) and the Extensible Markup Language (XML).

EDI is the electronic exchange of structured documents between trading partners. Its primary goal is to minimize the cost, effort and time incurred by paper-based business transactions. EDI is complex and difficult to implement. It has required special proprietary software, but there are now moves to enable EDI data to travel inside XML.

XML is a markup language for documents containing structured information. The XML specification defines a standard way to add markup to documents. XML was created so that richly structured documents could be used over the Web and is considered that XML is a successor of EDI standard.

2.2.4 XML in Details

Nowadays, most Web browsers are already XML-capable; if not, then one can be downloaded that is, for free. If your word processing and spreadsheet software don't already handle XML documents, then their next release almost surely will. The major vendors of enterprise resource planning software, databases and middleware, including EDI translators, have started to bring XML capabilities to market. E-Marketplaces are also XML-enabled. So a globally supported, language-neutral data standard for software interoperability is emerging.

No data standard on its own will solve all of the problems that exist with the traditional methods for e-commerce. But huge support from the software industry, bringing products to market that are affordable to purchase and operate, and easy to use, will go a long way toward bridging the gap between the biggest corporations and the rest of the world, relative to e-commerce technology. That in itself will address one of the most significant and persistent barriers to the growth of e-commerce that we have known since the early days of EDI, which is how to enable small and medium-sized enterprises, or SMEs, to participate in business-to-business e-commerce easily and affordably, for their own benefit as well as for the benefit of their trading partners.

Among the numerous industry initiatives underway is ebXML (www.ebxml.org). Hosted by OASIS and UN/CEFACT, the body responsible for EDIFACT, this initiative has undertaken to develop a technical framework that will enable XML to be utilized in a consistent manner for the exchange of electronic business data. A primary objective of ebXML is to lower the barrier of entry to electronic business for SMEs. Worthy of note is that in its October 2000 meeting, the ASC X12 committee voted to develop standards based on ebXML.

XML is not just a single standard, it’s a collection of standards whose members are in various stages of development and use. The data standard, what we know simply as XML, is a set of syntactic rules for creating properly formed XML documents. These rules provide the grammar for the language, but not the vocabulary. The standard itself is specified within roughly thirty printed pages in contrary to the X12 EDI standard which runs to almost two thousand pages.

In essence, traditional EDI standards embody rules for both syntax and semantics. The semantic considerations, which include specifications for business documents/messages, the vocabulary of data elements and code values used within them, and the guidelines for their use, constitute the bulk of these standards and therefore the bulk of their value. Direct comparisons between XML and traditional EDI standards are therefore flawed. However, a number of organizations and industry consortia are busily working to fill this gap by developing XML vocabularies that provide the semantic basis for business messages. These are now beginning to emerge for the finance, insurance, healthcare and travel industries, to name only a few.

XML is a text based standard that was intended by its designers to be humanly readable. At the same time it provides constructs that enable information to be highly structured and is rigorous enough to be machine- readable. Data elements are identified and delimited within XML documents by the use of tags. Tags act as containers for information content and can themselves be nested to form a hierarchy of related data elements.

2.2.5 Document-Type Definition
A DTD is specifying the structure of an XML file. It gives the names of the elements, attributes, and entities that can be used, and how they fit together. A DTD is a file (or several files to be used together), written in XML’s Declaration Syntax, which contains a formal description of a particular type of document. XML allows designers to write their own document-type definition – DTD.

DTDs are rules that define which markup element can be used to describe the document. If we want to create our own markup we have to define it in DTD. There are thousands of XML DTDs already in existence in all kinds of areas. Many of them can be downloaded and used freely or we can write our own.
DTD for HTML

HTML will become one more DTD in collection of XML vocabularys. Different specifications of HTML that W3C has publicated and some others elements and attributes that was established by Microsoft and Netscape are actually DTDs.

Example:

We know that we have put text inside and if we want the text be bold. If we use <bold> and </bold> we don’t get bold text. These rules and many others are a part of DTD for HTML 4.0.

Logical and Physical Structure

Each XML document has both a logical and a physical structure. Physically, the document is composed of units called entities. Logically, the document is composed of declarations, elements, comments, character references, and processing instructions, all of which are indicated in the document by explicit markup.

An XML element is used to describe a specific piece of data and may contain children text nodes and other element nodes. An element usually contains two different kinds of tags: a start-tag and an end-tag, with text or more markup between them. XML lets us decide which elements we want in our document and then indicate our element boundaries using the appropriate start- and end-tags for those elements. Elements are deffined in DTDs and their markups are used to represent these elements in documents.

An XML attribute, however, is typically only used to further describe an element and does not contain children text nodes. Attributes are used to associate name-value pairs with elements. Attribute specifications may appear only within start-tags and empty-element tags.

DTD and Document

DTDs define markup that we use to describe content of our document. XML lets users create their own DTD. In fact DTD is part of document even if it is been in different file. DTDs and documents are one unit divided in two parts. XML document is divided because two parts contain different type of information, and each of them have different role to play.

DTD contents:

· Element declaration,

· Attribute-list declaration,

· Content model,

· Entity declaration.

Basic document structure:

· Prologue,

· Document element,

· Elements,

· Attributes,

· Content,

· Comment,

· Processing instructions.
2.2.6 XML Example

In this section we will implement an XML example consisting of two documents:

· gallery.dtd

· paintings.xml

These documents are used to catalogue all paintings in a gallery. In the Figure 2.1 we can see a content of gallery.dtd.
	· PAINTING

define painting record

· TITLE

describe title of painting

· PAINTER

define author of painting

· TECHNIQUE
describe painting technique

· PRICE

define price of painting

· RATING

according to rank between one and five

· COMMENTS
comment about painting

Figure 2.1. Gallery.dtd
In the Figure 2.2 we can see the first step in element declaration. EMPTY elements don’t contain any text. They have attributes to describe content.

	<!ELEMEN painting> <!ELEMENT title>

 <!ELEMENT painter>

 <!ELEMENT technique EMPTY>

 <!ELEMENT price>

 <!ELEMENT rating EMPTY>

 <!ELEMENT comments>

Figure 2.2 Element declaration
In the Figure 2.3 we can see attributes that we use to describe elements in this example.
	TECHNIQUE: CLASS.Values for the CLASS are
oil, watercolor, crayon, and graphics.
RATING: NUMBER.Values for the NUMBER are
1, 2, 3, 4, and 5.

Figure 2.3 Attributes

In the Figure 2.4 we can see attribute-list declaration.

	<!ATTLIST TECHNIQUE CLASS (OIL | WATERCOLOR | CRAYON | GRAPHICS) “OIL” #REQUIRED> <!ATTLIST RATING NUMBER (1| 2 | 3 | 4 | 5) “3” #REQUIRED>

Figure 2.4 Attribute-list declaration
All possible values of attributes are put between (and). They are separate with |. “OIL” and “3” go without saying. Label #REQUIRED means that the attribute is required every time when element is used in the document.

Element Content

An element type has element content when elements of that type must contain only child elements (no character data), optionally separated by white space (characters matching the non-terminal).

There are tree types of content in XML:

· Data content - text characters (#PCDATA),

· Element content - contain some other elements and describe
the way they come,

· Mixed content - contain both text and elements.

In the Figure 2.5 we can see parent-child element.
	PAINTING

· title

· painter

· technique

· price

· rating

· comments

Figure 2.5 Parent-child element

In Figure 2.6 we can see how the new element declaration looks.

	<!ELEMENT painting (title, painter, technique, price, rating, comments?)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT painter (#PCDATA)>

<!ELEMENT technique EMPTY>

<!ELEMENT price (#PCDATA)>

<!ELEMENT rating EMPTY>

<!ELEMENT comments (#PCDATA)>

Figure 2.6 Element declaration
Elements title, painter, technique, price, rating have to be inside painting element in that order. Element comment can be skiped because it is marked with (?).

In Figure 2.7 we can see the final product gallery.dtd.
	<!ELEMENT painting (title, painter, technique, price, rating, comments?)> <!ELEMENT title (#PCDATA)>

<!ELEMENT painter (#PCDATA)>

<!ELEMENT technique EMPTY>

<!ATTLIST TECHNIQUE CLASS (OIL | WATERCOLOR | CRAYON | GRAPHICS) “OIL” #REQUIRED>

<!ELEMENT price (#PCDATA)>

<!ELEMENT rating EMPTY>

<!ATTLIST RATING NUMBER (1| 2 | 3 | 4 | 5) “3” #REQUIRED>

Figure 2.7 Gallery.dtd

Prologue

Prologue contains all relevant informations about the document and it is not part of content or markup: XML declaration, document-type declaration, and processing instructions.

XML documents should begin with an XML declaration which specifies the version of XML used and tells application which document to process: just document or to process both document and DTD.

In Figure 2.8 we can see how common XML declaration looks.
	<?XML VERSION=”1.0” RMD= “ALL” ?>

a) (?)- this is processing instruction;

b) RMD (Required Markup Declaration);

· ALL - all DTDs have to be processed together with document;

· INTERNAL - just internal DTD has to be processed;

· NONE - none of the DTDs have to be processed;

Figure 2.8 XML declaration
Internal DTD

We can add DTD that we made for our document inside of the document, but have to be very careful. This internal subset of DTD is useful because we can identify entities which are unique for that document. When we want to use DTD just for one document we can put it in our document (now we can use that DTD only in that document!). If we put DTD in separate file we can use it in as many documents as we want.

	<!DOCTYPE gallery SYSTEM “gallery.dtd”>

a) <!DOCTYPE - declaration of document’s type begins with this;

b) gallery – document-element name;

c) SYSTEM - DTD is placed somewhere in computer system and its name is gallery.dtd.

Figure 2.9 Document-type declaration

In Figure 2.9 we can see document-type declaration for paintings.xml document. In Figure 2.10 we can see how document looks when DTD is a part of the document.

	<!DOCTYPE gallery [

<!ELEMENT painting (title, painter, technique, price, rating, comments?)> <!ELEMENT title (#PCDATA)>

<!ELEMENT painter (#PCDATA)>

<!ELEMENT technique EMPTY>

<!ATTLIST TECHNIQUE CLASS (OIL | WATERCOLOR | CRAYON | GRAPHICS) “OIL” #REQUIRED>

<!ELEMENT price (#PCDATA)>

<!ELEMENT rating EMPTY>

<!ATTLIST RATING NUMBER (1| 2 | 3 | 4 | 5) “3” #REQUIRED> <!ELEMENT comments (#PCDATA)>
] >

Figure 2.10 Paintings.xml document

Processing Instruction

Processing instructions (PIs) allow documents to contain instructions for applications. XML declaration is actually the PI. PIs begin with <? and end with ?>. You can use PI in any place in the document but most often in prologue.

Document element defined in internal DTD has top priority. That element is presumed to be the ‘root’ element, which encloses everything else in the document, solt contents all other elements.

In Figure 2.11 we can see document element for paintings.xml.

	<GALLERY>…</GALLERY>

Figure 2.11 Document element

Elements are main components of the markup language and they are defined in DTD. Elements appear in the document like markups. Non-empty elements are made up of a start-tag, the element's content, and an end-tag.

Empty elements are a special case that may be represented either as a pair of start- and end-tags with nothing between them or as a single empty element tag that has a closing slash to tell the parser ‘don't go looking for an end-tag to match this. EMPTY elements are used to insert entities in document, like IMG in HTML.

In Figure 2.12 we can see code that describes painting in paintings.xml document using gallery.dtd.
	PAINTING>

<TITLE>Smoking</TITLE>

<PAINTER>Drasko Klikovac</PAINTER>

<TECHNIQUE CLASS=”CRAYON” />

<PRICE>???</PRICE>

<RATING NUMBER=”5” />

</COMMENTS>

</PAINTING>

Figure 2.12 Description of the painting
	<TECHNIQUE>
<CLASS>Oil</CLASS>

</TECHNIQUE>

<RATING>

<NUMBER>5</NUMBER>

</RATING>

Figure 2.13 Element definition

Attributes give us more information about element. Instead of attributes we can use elements. In that case we have to define two more elements in our example: CLASS and NUMBER and we can see these definitions in Figure 2.13
In Figure 2.14 we can see the final product paintings.xml document.
	<?XML VERSION=”1.0”’ RMD= “ALL” ?>

<!DOCTYPE gallery SYSTEM “gallery.dtd”>

<GALLERY>

<PAINTING> <TITLE>Smoking</TITLE>
<PAINTER>Drasko Klikovac</PAINTER>
<TECHNIQUE CLASS=”CRAYON” />
<PRICE>???</PRICE>
<RATING NUMBER=”5” />
</COMMENTS>

</PAINTING>

</GALLERY>

Figure 2.14 Paintings.xml

2.2.7 Well-Formed and Valid XML Document

All XML documents must be well-formed:

· If there is no DTD in use, the document should start with a Standalone Document Declaration (SDD) saying so:
<?xml version="1.0" standalone="yes"?>

· All tags must be balanced: that is, all elements which may contain character data must have both start- and end-tags present (omission is not allowed except for empty elements).

· All attribute values must be in quotes.

· Any EMPTY element tags (eg those with no end-tag like HTML's , <HR>, and
 and others) must either end with ‘/>’ or you have to make them appear non-EMPTY by adding a real end-tag. Example:
 would become either
 or
</BR>.

· There must not be any isolated markup-start characters (< or &) in your text data.

· Elements must nest inside each other properly, well-formed documents with no DTD may use attributes on any element, but the attributes are assumed to be all of type CDATA.

An XML document is valid if it has an associated document type declaration and if the document complies with the constraints expressed in it. They must already be well-formed.

2.2.8 Xlink and Xpointer

The linking abilities of XML systems are much more powerful than those of HTML. Existing HREF-style links will remain usable, but the new linking technology is involving hypertex which let you manage bidirectional and multi-way links, as well as links to a span of text (within your own or other documents) rather than to a single point.

An XPointer is always preceded by one of #, ?, or |. The # and ? mean the same as in HTML applications. The | means the sub-resource can be found by applying the XPointer to the resource, but the method of doing this is left to the application.

2.2.9 XML Processor

A software module called an XML processor is used to read XML documents and provide access to their content and structure. It is assumed that an XML processor is doing its work on behalf of another module, called the application.

2.2.10 XSL

XSL is a stylesheet language for XML. Working in conjunction with XML, Extensible Style Language (XSL) is a generic XML-to-XML transformation language that is also expressed in XML. XSL is used to convert an XML file into well-formed HTML, potentially with cascading style sheet decorations.

The resulting output can then be displayed within a browser interface. This extensible presentation method is one of the keys to the interest in XML technologies because it only requires a change to the XSL template to revise the presentation of all XML documents using that template. XSL can also present information in an order different from how it is stored and can perform other data manipulation transformations prior to display.

Microsoft Internet Explorer 5.0 contains the ability to parse XML documents. Microsoft Office 2000 uses XML embedded within HTML files to store information that cannot otherwise be held in HTML, such as a document’s properties. In addition, with native XML support planned for Microsoft SQL Server 7.5, additional XML features, such a improved search capabilities and content categorization, should be widely available in the new millennium.

The publicly-released Netscape code (Mozilla) and the almost indistinguishable Netscape6 have extensive XML support, based on James Clark’s expat xml parser. The Opera browser now supports XML, CSS, and XSL on MS-Windows and Linux and is the most complete implementation so far. The browser size is tiny by comparison with the others, but features are good and the speed is excellent.

2.3 B2B Solutions

What is the single most important factor that determines whether one e-business is a success or a failure? It’s the profit. By the year 2000 many dot-coms still weren’t aware of this simple truth: it’s the absence of profit that tells us we should close down the business. So, an e-business without a profit plan is like a car without a gas: it may look nice, it may impress people, it may have cost you an arm and a leg, but in the end it’s going nowhere [Sessions00]. The lessons have been learned in the year 2000 when e-business after e-business went bankrupt, not because of a lack of customers, but because of a lack of plan to make a profit on those customers. In the years to come, profit will be as important as ever. The model for making profit will evolve from one based on competition to one based on collaboration. The most competitive companies will those that focus only on how well they collaborate. The success of the overall collaboration will define the success of each of the individual units. In e-commerce collaboration means selling through partner relationships. This means sharing profits. We need technologies for delivering e-commerce in a collaborative environment at the lowest possible cost. Today, there are two technical visions for e-business and e-business collaboration: Microsoft .NET and Sun Open Net Environment based on J2EE (Java 2 Platform Enterprise Edition).

2.3.1 E-Business Requirements

In order to support electronic collaboration, the computer systems that run e-business must include certain capabilities. The most important are these:

· Interoperability - the systems must be able to share information with collaborator systems.

· Availability - systems must be highly available; the first time a partner e-business loses a sale because the system is down, it will be very unhappy. The second time, it will discontinue the partnership relationship.

· Throughput - systems must be able to support high transactional throughput, since payment requests are now coming not only from e-business’s own web site, but also indirectly from those of its partners.

A New Model for the Internet

The Internet transactions until now included downloading of static documents, manual purchases and transactions and file downloads, all by manual use of a browser. The new Internet model is based on Web services [Winoto00]. Using Web services, Internet transactions will be initiated automatically by any program, not only browsers. Before we explain what a Web service is, let’s just say that they are described, published, discovered and invoked dynamically in a distributed environment. This functionality enables intelligent agents, e-marketplaces, e-auctions, global B2B and more.

What are Web Services?

Web services emerged as a solution for providing a standard way to retrieve data without proprietary software and hardware. Simplified, a Web service is a collection of functions packaged as a single entity and published to the network for use by other programs. The foundation of Web services is XML messaging over standard web protocols such as HTTP. According to Sun’s white-paper, a Web service is “an application that accepts requests from other systems across a network mediated by lightweight, vendor-neutral communication technologies”. In document “Defining the Basic Elements of .NET”, Microsoft says: “XML Web services let applications share data. More powerfully – let them invoke capabilities from other applications without regard to how those applications were built, what operating system or platform they run on and what devices are used to access them”. So, both Sun and Microsoft agree what a Web service is. From a purely intuitive level, it is a service consumed via the Internet.

Web Services Model

In Web services model, large applications are segmented so individual components can exist as Web services. This model replaces segmentation into DLLs (Dynamic Link Libraries) and COMs (Component Object Modules). As mentioned earlier, it’s accessible through standard protocols such as HTTP and it allows buyers and sellers to connect dynamically and execute transactions in real time.

Web Service Protocols

There are three protocols used in the Web services model:

· UDDI (Universal Description, Discovery, Integration)

· WSDL (Web Services Description Language)

· SOAP (Simple Object Access Protocol)

In order to perform Web services, a provider creates, assembles and deploys a Web service using the platform of its own choice and defines the service in WSDL. Then, the provider registers the service in UDDI registries, which enables other software developers to search for services offered by others. A user finds the service by searching a UDDI registry and the user’s application binds to the Web service and invokes the service’s operations using SOAP.

E-Business Architecture

Typical e-business application is three-tiered. It has a presentation tier, a business tier and a database tier. The presentation tier is responsible for working with clients. It accepts an HTTP requests from a web browser
and returns an HTML page that browser can then display. In the business tier much of the business logic is implemented. Business logic is typically packaged as components - entities of business logic with which one interacts
through well-defined interfaces. It requires expensive resources, such as database connections, threads, TCP/IP connections and message queue connections. Finally, the actual data is stored in the database tier. Its primary client is the business tier and the communications between these two tiers use a specific API.

2.3.2 Microsoft .NET

This is a product suite that enables smart, enterprise-class Web service. The .NET architecture consists of several elements:

· .NET framework

· Visual Studio .NET

· .NET Enterprise Servers

· .NET Client Systems

· UDDI collaborative infrastructure

· .NET Building Block Services

The .NET framework

The .NET framework is a general runtime environment closely associated with the operating system. It includes Component-oriented business tier infrastructure (COM+), the language-neutral runtime environment, just-in-time compiler and a set of operating system libraries packaged using the .NET component model.

Visual Studio .NET

VS .NET is the main .NET development tool. Presentation tier programmers use it to define the logic that delivers HTML pages to client systems. Business tier programmers use it to implement business logic in a variety of languages and then to package that business logic as COM+ components. VS is language neutral and this is critical issue to the .NET strategy.

The standard Microsoft languages that come with it are Visual Basic .NET, Visual C++ and Visual C#. Language neutrality is achieved by translating .NET languages into a common language called MSIL (Microsoft Intermediary Language). Through the creation of an MSIL translator language vendors make their languages compatible with Visual Studio .NET and such languages are referred to as a .NET enabled language. After the translation into MSIL, the code needs to be interpreted and translated into a native executable by Just-In-Time MSIL compiler. The .NET framework includes the Common Language Runtime (CLR) which achieves this goal. CLR includes many development features usually found in a particular language such as:

· Garbage collection

· Type definitions

· Debugging

· Error handling

· Cross-language compatibility

Cross language compatibility is the ability to define a base class in one language (e.g. C#) and override methods in a completely unrelated language (e.g. COBOL). Any .NET enabled language can be used as a scripting language for presentation logic. The presentation tier scripts are compiled rather then interpreted which gives a significant performance boost.

Another part of VS .NET is ASP .NET. It’s a new presentation tier programming model that is only a matter of dragging and dropping GUI controls onto a canvas. Then, the code that responds to control events can be written in any .NET enabled language. This all works on a server, so it’s irrelevant if the actual client device does not support any of the .NET technologies.

.NET Enterprise Servers

Another important part of .NET product suite are .NET Enterprise Servers. The .NET Enterprise Servers are a collection of add-on server products all designed to provide specialized, enterprise level services. Each is priced independently, giving maximum financial flexibility in configuring an overall solution. One only pays for those services one needs.

The best known of the Enterprise Servers is Microsoft's SQL Server. It is a high performance, high availability, and highly scalable relational database. The .NET Framework does not require the use of SQL Server. Many organizations will use the .NET framework to build their e-commerce systems with alternative data storage technologies such as Oracle or DB2. Every popular database can be used as a .NET data tier. Oracle, for example, can be accessed through the database neutral ADO .NET interface.

The newest of the .NET Enterprise Servers is Application Center. This product is designed for companies that need either 24X7 availability and/or low cost scale-out. The Application Center Server is both a cluster coordinator and a cluster manager.

Internet Security and Acceleration Server (ISAS) is focused on the needs of the presentation tier. ISAS provides two important functions: HTML page caching, a significant performance enhancement for many sites, and firewall functionality. Firewall functionality is, of course, critical for the security any serious e-commerce site. ISAS provides a low-cost software solution to hardware-based firewall products. Similar to the other .NET Enterprise Servers, ISAS can be integrated with other pieces of .NET, but is not required.

BizTalk Server is an orchestration product, used primarily to tie together the various pieces of an organization's operation and to allow that organization to interoperate with partner operations using XML.

Commerce Server is a framework for building an e-commerce site. It primarily focuses on the needs of e-commerce retail operations. Such sites can build web sites very quickly using and specializing the components provided as part of Commerce Server.

2.3.3 Sun Open Net Environment (ONE)

Sun Microsystems - unlike Microsoft which is starting a whole new application paradigm called .NET - is promoting the Sun Open Net Environment (Sun ONE), an open framework that supports "smart" Web services, and in which the Java 2 Platform, Enterprise Edition (J2EE) platform plays a fundamental role [King00]. This means that in the world of Sun developers, Web services will be built using servlets, JSP pages, EJB architecture, and all the other standards that are entwined with J2EE technology. We have introduced some new acronyms in the previous few sentences. Let take one step at a time to begin explaining the Sun’s vision of a software solution for implementing e-commerce using Web services.

What it is

Similarly to the .NET framework, Sun ONE is also a product suite that includes server software, development tools, and other products for building Web-based e-commerce applications and services but unlike Microsoft, it’s not a new standard, but it heavily relies on a well know and used standard – J2EE. Basically, Sun ONE is a solution vendor of a J2EE standard compliant software suite made by the standard creator itself – Sun Microsystems company. It’s only one of many vendor solutions for J2EE, but until now it’s the most integrated, all in one product suite closely attached with the J2EE standards.

Sun claims that Sun ONE is their vision, architecture, platform, and expertise for creating, assembling, and deploying today's Services on Demand. According to a new philosophy, under Services on Demand, Sun includes:

· Traditional dedicated applications,

· Web applications and

· Future Web services.

Service Delivery Methods

In the Sun ONE model, Services on Demand can be delivered over the Internet in three ways.

· Web Application Model. This delivery method is designed for human interaction. In this model, Web applications deliver dynamic content by employing technologies such as Java Servlets, JavaServer Pages (JSP), and Java2 Platform, Enterprise Edition (J2EE) containers to implement dynamically updating Web-based applications. In addition, iPlanet products -- including the iPlanet Portal Server, iPlanet Application Server, iPlanet Directory Server, and iPlanet Integration Server -- optimize development time, reliability, and facilitate Business Processes Management (BPM) and resource aggregation.

· Web Services Model. Web services are modular functions that can discover and engage other Web services to complete complex tasks over the Internet, often without human intervention. They are loosely coupled, meaning they dynamically locate and interact with other components to provide services, and integrate applications between an enterprise and its customers and business partners. Web services delivery is based on an emerging agreed set of standards including XML, SOAP, UDDI, and WSDL.

· Web Client Model. Java Web clients are Java applications that are downloaded to desktop computers, handheld devices, audiovisual devices, set-top boxes, and a broad range of devices under development. Although many Java applications are intended to run on desktop computers, the Web client model anticipates that many of them also will be delivered to other devices with limited processing capability, limited memory, and unreliable, intermittent Internet connectivity. Elements of the Sun ONE architecture address the environmental and device-related constraints that the Web client model is designed to overcome.

The Sun ONE Services Stack

Sun ONE is designed to address these services delivery models today and evolve in the future as products and technologies develop. To remain open and integratable, the Sun ONE Services Stack is based on a number of important standards for APIs and protocols, including Java, eXtensible Markup Language (XML), SOAP, and emerging standards such as ebXML, WSDL, and UDDI. Sun ONE bases its interoperability strategy on alignment with these standard Web interfaces.

Sun ONE products that are part of the Services Stack include the Solaris Operating Environment, iPlanet products, Forte Tools integrated development environments, and Java technologies. Because Sun ONE is standards-based, products from other vendors can be integrated into the Sun ONE architecture. But the integrated nature of the all-Sun product stack, which is fully optimized, tested, and supported by Sun, is an important value proposition for many developers and enterprise IT organization.

The Sun ONE Services Stack is comprised of three primary areas:

· Service Delivery

· Service Container

· Service Integration

The Service Delivery box contains products like the iPlanet Portal Server and related services that focus on presentation for Services on Demand. These elements include, secure, personalization, and aggregated content management and services. Evolving services may include context awareness and synchronization with other services.

The Service Container is defined by a J2EE application server, such as the iPlanet Application Server, to run and manage Java applications, Web servers, Enterprise JavaBeans (EJBs), and Web services. In addition to the J2EE standard, the Service Container includes a de facto standard based on the iPlanet Presentation Framework, along with various Web-services-oriented APIs, tools, and technologies.

The Service Integration box provides three facilities for integrating Sun ONE applications with existing Enterprise Information Systems (EISs) such as enterprise resource planning (ERP) and customer-relations management (CRM) systems as well as the many custom systems that enterprises have developed to meet their special business requirements. The service integration for the Sun ONE platform can be achieved through the following technologies:

· J2EE Connector architecture

· Asynchronous reliable messaging

· Sun ONE's native support for Web services

The iPlanet Integration Server, iPlanet Directory Server, iPlanet Application Server are among the Sun ONE products that deliver the functionality found in the Service Integration box.

Physical Components

Sun ONE product suite has several elements:

· Operating environment for network servers – Solaris OE – valuable foundation of Sun’s integrated stack. Current version is Solaris 9

· iPlanet Software – it takes full advantage of the Solaris OE’s advanced features. It includes various server software products

· Java technology – Sun ONE is based on Java programming language and its techniques

· Forte tools – platform for developing services. This is an integrated development environment (IDE) which is now known as Sun Studio

Sun ONE Interoperability

It is based on alignment with standard Web interfaces. It involves two primary dimensions:

· Interoperation with existing applications

· Interoperation with Microsoft .NET

Interoperation with existing applications is using the following three models supported by the architecture:

· Connectors (synchronous and/or asynchronous) to major applications, such as Enterprise Resource Planning (ERP), Customer Relations Management (CRM), and legacy mainframe

· Containers created with JSP and EJB technology that wraps applications inside components based on the EJB architecture; once “bean-ized”, the application is easily integrated into a Web Service

· Web services that completely wrap applications into a standard Web Service

On the other side, Sun ONE architecture is able to consume .NET Web services and provide Web services that may be consumed by the .NET environment. Sun ONE support of XML, SOAP, UDDI and WSDL has been demonstrated to be interoperable with .NET implementations of these same standards. Web applications enabled by the Sun ONE platform can be delivered to any browser. On Forte-IDE supported platforms, Forte for Java software may be used to develop applications that consume both .NET and Sun ONE Web services.

2.3.4 VS.NET vs. Sun ONE (J2EE): It Comes Down to Language and OS

As an answer to VS.NET, Sun debuted the Sun Open Net Environment (Sun ONE), which includes elements for building e-commerce applications and services.

The key difference between the two tool sets comes down to operating systems. Microsoft favors one operating system—Windows—and allows development through new and existing tools in multiple languages, including Visual Basic, C++, and a Java-like language it developed called C#. Sun allows development on multiple operating systems—including Windows, UNIX, Linux, and mainframe systems—using only Java.

The J2EE verses .NET battle will be the soap opera of the decade to watch [Chad00]. But there are promises and realities about both platforms. For example, J2EE is a rather brilliant move on the vendors' part, but should not be seen as an altruistic initiative. All vendors that participate in J2EE are after financial gains, as well as an effective weapon against Microsoft. J2EE enables these vendors to collaborate together and stand ground. Many of these vendors have undergone recent mergers and acquisitions themselves, and so organizations must exercise good judgment when choosing such a platform.

As far as Microsoft.NET, that is far from an altruistic initiative. It is a monopolistic initiative dressed in altruism. Microsoft has been claiming that .NET is about open and interoperable web services, when in reality Microsoft is already making their web services closed and proprietary. Microsoft will likely increase the costs of their solutions if a monopoly can be achieved, and innovation will be slowed down significantly.

So what's a company that wishes to build an e-commerce to do? Both platforms are useful, and both can lead to the same destination. When deciding, it’s essential to concentrate on the larger business issues: existing developer skill sets, existing systems, existing vendor relationships and customers. Those almost always drive the decision, not the minor features.

Arguments supporting both platforms

· Regardless of which platform is picked, new developers will need to be trained (Java training for J2EE, OO training for .NET)

· Web services can be built today using both platforms

· Both platforms offer a single-vendor solution.

· The scalability of both solutions is theoretically unlimited.

Arguments for .NET and against J2EE

· .NET has Microsoft's A-team marketing it

· .NET released their Web services story before J2EE did, and thus has some mind-share

· .NET has an awesome tool story with Visual Studio.NET

· .NET has a simpler programming model

· .NET gives language neutrality when developing new e-business applications, whereas J2EE makes us treat other languages as separate applications

· .NET benefits from being strongly interweaved with the underlying operating system

Arguments for J2EE and against .NET

· J2EE is being marketed by an entire industry

· J2EE is a proven platform, with a few new web services APIs. .NET is a rewrite and introduces risk as with any first-generation technology

· Existing J2EE code will translate into a J2EE web services system without major rewrites. Not true for Windows DNA code ported to .NET.

· Their BizTalk framework has proprietary SOAP extensions and does not support ebXML.

· J2EE is a more advanced programming model, appropriate for well-trained developers who want to build more advanced object models and take advantage of performance features

· J2EE lets a company take advantage of existing hardware it may have

· J2EE offers platform neutrality, including Window and also good (but not free) portability

· J2EE has a better legacy integration story through the Java Connector Architecture (JCA)

· J2EE lets us use Java, which is better than C# due to market-share and maturity. According to Gartner, there are 2.5 million Java developers. IDC predicts this will grow to 4 million by 2002. 78% universities teach Java, and 50% of universities require Java.

· We would not want to use any language other than C# or Java for development of new mission-critical solutions, such as a hacked object-oriented version of C, VB, or COBOL.

2.3.5 ebXML

E-business XML is a set of standards for exchanging data between e-businesses. It defines core components, business processes, registry and repository, messaging services, trading partner agreements, and security [Glaser00].

What It Is

ebXML is sponsored by OASIS (Organization for the Advancement of Structured Information Standards) and UN/CEFACT (United Nations Centre for Trade Facilitation and Electronic Business). It's a modular suite of specifications enabling enterprises of any size and in any geographical location to conduct business over the Internet. Using ebXML, companies have a standard method to exchange business messages, conduct trading relationships, communicate data in common terms, and define and register business processes.

ebXML has been called a horizontal enabler of B2B interaction, as opposed to vertical standards such as RosettaNet. The goals of ebXML are to minimize costs, provide multilingual support for a global marketplace, and offer a smooth transition from legacy EDI (Electronic Data Interchange) transactions.

ebXML is a complex series of standards, and by May 2001, a host of specifications and technical reports had been approved:

· An overall technical architecture

· A business process specification schema

· A registry information model

· A message service specification

All of these specs are helping businesses define their interactions and conduct binary collaboration (interactions between two companies). These include executing transactions, so two companies might exchange documents via ebXML to place an order or sign a deal.

Big-Name Support

The ebXML is supported by PeopleSoft, Commerce One, Fujitsu, RosettaNet, Open Applications Group, Sun, and other companies and industry groups.

The initiative was started in September 1999, and an incredible number of companies and people worked on its various pieces until its conclusion in May 2001. Along with OASIS and UN/CEFACT as major sponsors, people from places as diverse as Visa, Nordstrom.com, Ford, and the University of Vienna have worked on various project teams, which included Business Process Methodology, Core Components, Quality Review, and Marketing Awareness.

Current Standards and Issues to Address

The Technical Architecture is at Version 1.04; the Business Process Spec is at Version 1.01; the Registry Information and Registry Services are at Version 1.0; and the Message Service Spec is also at 1.0. All of these standards await further work from the new interim working group.

The specs are still in their earliest versions and will take some time to gain acceptance. "We see the ebXML work as excellent but untested," said David Connelly, president and CEO of Open Applications Group, which recently threw its support behind ebXML. "We are working within the Open Applications Group to develop documents on how to use it in an implementation."

Interplay with Other Standards and What’s Up Next

The ebXML has a broad scope and supports various existing standards and business practices, including SOAP messaging. Though ebXML does have its own registry, it's possible that companies will use both ebXML and UDDI, because both utilize XML and open standards.

What's Up Next?

The initial development phase ended in May 2001 and a new group was formed, the e-Business Transition Ad hoc Working Group (eBTWG). This group will oversee further development of ebXML Business Process and Core Components until a permanent Electronic Business Working Group (ebWG) is formed. Klaus-Dieter Naujok, from UN/CEFACT, was named as chair of the interim group. OASIS will be responsible for the ebXML technical infrastructure, and UN/CEFACT will be responsible for development of business and information content.

2.4 Problems
1. What are the most important global barriers to B2B electronic commerce and why?

2. What can buyers expect from e-marketplaces? What expectation is the most realistic and why?

3. What factors lead electronic commerce to a meltdown in the year 2000?

4. Name three successful B2B companies and give three reasons of success for each of them.

5. What are the reasons for introducing XML?

6. By Your opinion, in what direction will XML evolve and why?

7. What are the differences and what are the similarities between XML and HTML?

8. Why are Web services important? What are the differences between Web services on one side and DLLs and COMs on the other?

9. By Your opinion, what are the advantages of the .NET concept , if any, over other solutions and why?

10. What are three most important qualities of ebXML and why?

2.5 References

[Jakovljevic00]
Jakovljević, M. and Milutinović, V., “Business-to-business tutorial”, http://galeb.etf.bg.ac.yu/~vm, Belgrade, Serbia, Yugoslavia, 2001.
[Barker00]
Barker, P., “Case Study: Responding to E-Commerce Technology Failures”, Ecomworld.com, 2001.
 [Aberdeen00]
Aberdeen Group, “The e-Business Marketplace: The Future of Competition,” Executive White paper, (www.aberdeen.com), Aberdeen Group, One Boston Place Boston, Massacusetts 02108 USA, April 2000.
[Sterling01]
Sterling Commerce, "E-Marketplace Liquidity: Bridging existing EDI communities with the Global Trading Web,” White paper, Sterling Commerce Inc, (www.sterlingcommerce.com/solutions/products/ebi/wp/pdfimages/emarket/EMktLiquidWhit_04-12.pdf), November 2001.

[Soon00]
Choi, S. Y., Whinston, A. B., “B2B Evolution Continues”, Cisco.com, June 27th, 2002.

[XML98]
The Extensible Markup Language (xml) 1.0 Specification, (http://www.w3.org), The World Wide Web Consortium, February 1998.

[Spiteri00]
Spiteri, K., ”A quick take on XML and e-Commerce”, Ecommworld.com, 2001.

[Sessions00]
Sessions, R., ”Java 2 Enterprise Edition (J2EE) versus .NET – Two Visions for eBusiness”, ObjectWatch, Inc., 2001.
[Winoto00]
Winoto, I., ”Microsoft .NET vs. J2EE – Implementation for Web Services”, IBM Austalia, 2001.

[King00]
King, C., ” Getting Started on Developing Web Services”, Sun.com, 2001.

[Sun00]
Sun Microsystems, ”Feature Story: Sun ONE Architecture Puts It All Together”, Sun.com, 2002.
[Chad00]
Chad, V., Roman, E., “J2EE vs. Microsoft .NET A comparison of building XML-based web services”, The Middleware Company, TheServerSide.com, 2002.

[Glaser00]
Glaser, M., “Overview of Web Services Standards”, The Middleware Company, Sun.com, 2002.

� Prepared by Sasa Mitrovic (sasa@galeb.etf.bg.ac.yu) and Veljko Мilutinovic (vm@etf.bg.ac.yu)

(Business-to-business e-commerce evolution from public exchanges (e-marketplaces) towards private exchanges will be discussed in section 2.1.5

(The XML data standard will be discussed in section 2.2

(Web services frameworks will be discussed in sections 2.3.2 and 2.3.3

