Web page classification using spatial information

Miloš Kovačević1, Michelangelo Diligenti2, Marco Gori2, Marco Maggini2,
Veljko Milutinović3

1School of Civil Engineering, University of Belgrade, Serbia

milos@grf.bg.ac.yu
2Dipartimento di Ingegneria dell’Informazione, University of Siena, Italy

{diligmic, maggini, marco}@dii.unisi.it

3School of Electrical Engineering, University of Belgrade, Serbia

vm@etf.bg.ac.yu

Abstract. Extracting and processing information from web pages is an important task in many areas like constructing search engines, information retrieval, and data mining from the Web. Common approach in the extraction process is to represent a page as a “bag of words” and then to perform additional processing on such a flat representation. In this paper we propose a new, hierarchical representation that includes browser screen coordinates for every HTML object in a page. Such spatial information allows the definition of heuristics for recognition of common page areas such as header, left and right menu, footer and center of a page. We show a preliminary experiment where our heuristics are able to correctly recognize objects in 73% of cases. Finally, we show that a Naive Bayes classifier, taking into account the proposed representation, clearly outperforms the same classifier using only information about the content of documents.
1 Introduction

Web pages are designed for humans! While previous sentence is more than obvious, still many machine learning and information retrieval techniques for processing web pages do not utilize implicit spatial information contained in the HTML source. By spatial information we assume positions of HTML objects in the browser window. For example, one can say that certain image is on the top left corner of the screen or that the most informative paragraph is in the center of the page and it occupies the area of 100x200 pixels.

Where this kind of information can be useful? Consider the problem of feature selection in document (web page) classification. There are several methods to perform feature selection process like Information Gain or TF-IDF (term frequency – inverse document frequency) [2]. In both cases we try to estimate what are the most relevant words that describe D i.e. the best vector representation of D that will be used in classification process. Assuming that web pages are designed for visual sense, we can argue that some words represent noise with respect to page topic if they belong to menu, banner link or perhaps page footer. That noise can be misleading for classifiers. Also, we can suppose words that belong to the central part of the page (screen) carry more information than words from the down right corner. Hence there should be a way to weight differently words from different layout contexts. At present moment in classic algorithms, positions of words and their spanning areas are not considered at all!

Let us mention another problem – designing efficient crawling strategy for focused search engines. Given a specific topic T and starting set of pages S, it is necessary to find as more T on-topic pages as possible in a predefined number of steps. By step is meant visiting (and downloading and indexing) a page reachable from S following hyperlinks from pages in S. In other words it is important to estimate whether an outgoing link is promising or not. In [3][4] and [5] different techniques are described. In any case when crawler decides to take into account page for link expansion, all links from the page are inserted into the crawl frontier (links that are to be visited). But many of them are not interesting at all (i.e. “this page is designed by XYZ ”). Sometimes links that belong to menus or footer are also misleading. Can we measure the importance of the link according to link position in the page (on the browser screen). Links in the center of the page are probably more important than links in the down left corner. Also, we can calculate link density in some area of the page (screen) and weight links taking into account that density factor. Links that are surrounded by “more” text are probably more important to topic than links positioned in groups, but groups of links can signify we are on the hub page that can also be important to our focused crawler. Can we learn positions of interesting links for some topics? In any case, we believe, information about position and belonging to a certain area can help to infer if link is promising or not!

To note the final example, consider problem of cheating search engines by inserting irrelevant keywords into HTML source. This is widely used technique in order to raise the probability of indexing the page by search engine and representing it with higher rank among search results. While it is relatively easy to detect and reject false keywords where their foreground color is same as background color, there is no way to detect keywords of regular color but covered with images. If coordinates of objects in a page representation are known, then search engines could filter false keywords hidden by other objects and users would get better answers on their queries!

The outline of the paper is as follows: In Section 2 we define the M-Tree format of a page used to render the page on the virtual screen, i.e. to obtain coordinates for every HTML object. Section 3 describes heuristics for recognition of header, footer, left and right menu, and “center” of the page. In Section 4, experimental results on a predefined dataset are shown. In section 5 we present some results on Web document classification. Finally, conclusion and remarks about the future work are given in Section 6.

2 Extraction of spatial information from an HTML source

We define a virtual screen (VS) specifying a coordinate system to locate the positions of HTML objects (in further text - objects) inside Web pages (in further text - pages). The VS corresponds to the display area in a maximized browser window of a monitor with resolution of 1024x768 pixels. Obviously pages are of different length and so theoretically height can be infinite. Top left corner of the VS represents the origin of the VS coordinate system.

The process of the spatial information extraction consists of three steps. In the first step a page is parsed using an HTML parser that extracts two different types of elements – tags and data. Tag elements (TE) are delimited with “<>” while data elements (DE) are contained between two consecutive tags. Each TE includes name of the corresponding tag and a list of attribute-value pairs. DE is represented as a list of tokens, which taken all together form data string between consecutive tags. In the second step, as soon as <TE, DE> pair is extracted from the input HTML stream, it is injected into the tree builder. Tree builder applies a stack machine and a set of predefined rules to build the tree that represents the HTML structure of the page. The output of this component we named m-Tree. There are many papers that describe construction of the parsing tree of an HTML page [6, 7]. In our parsing and building the m-Tree is done in a single pass. Rules are used to properly nest TEs into the hierarchy according to the HTML 4.01 specification [8]. Additional efforts were made to design tree builder that will be immune on bad HTML source. Now m-Tree (in further text mT) will be defined.

Definition 1: mT is directed n-ary tree defined with a set of nodes N and a set of edges with following characteristics:

1. N = Ndesc (Ncont (Ndata where:

· Ndesc (description nodes) is a set of nodes, which correspond to TEs of the following HTML tags: {<TITLE>, <META>}

· Ncont (container nodes) is a set of nodes, which correspond to TEs of the following HTML tags: {<TABLE>, <CAPTION>, <TH>, <TD>, <TR>, <P>, <CENTER>, <DIV>, <BLOCKQUOTE>, <ADDRESS>, <PRE>, <H1>, <H2>, <H3>, <H4>, <H5>, <H6>, , , , <MENU>, <DIR>, <DL>, <DT>, <DD>, <A>, ,
,<HR>}

· Ndata (data nodes) is a set of nodes, which correspond to DEs.

Each n (N has following attributes: name equals the name of the corresponding tag, attval is a list of attribute-value pairs extracted from the corresponding tag and can be null (i.e. nodes from Ndata have this attribute set to null). Additionally, each Ndata node has four more attributes: value, fsize, emph, and align. The first attribute contains tokens from the corresponding DE, the second one describes font size of these tokens and the third one carries information whether tokens belong to the scope of validity of one or more of the following HTML tags: {, <I>,<U>, , , <SMALL>, <BIG>}. The last one describes the alignment of the text (left, right or centered). In further text if n corresponds to tag X we write n<X> (n has attribute name = X) .

2. Root of mT, nROOT (Ncont represents a page as a whole and its name is set to “ROOT” while attval contains only one pair (URL : source url of the page itself).

3. A container node ncont can be parent either of a container or data node, which belongs to the context of ncont. (
From definition 1 it is clear that image and text nodes can be only leafs in a mT. After mT is obtained from the input page and when context of every object of interest is known, it is possible to apply algorithm for coordinate calculation. In fact, it is nearly the same algorithm that every browser does when rendering the page. Coordinates of objects are calculated in the third step using the rendering module and constructed mT as its input. We did not find any specific algorithm for page rendering except some recommendations from W3C [8] and so it was necessary to design our own. We decided to imitate the visual behavior of the Internet Explorer because of the popularity of this product. Some simplifications are made: the rendering module (RM) calculates only coordinates for nodes in mT (i.e. HTML tags not in mT are skipped), RM does not support layered HTML documents, frames and style sheets. In our opinion such simplifications do not influence significantly on the final task – recognition of common areas in a page.

[image: image1.wmf]This is another

example

X0,Y0

This is an example

This is an example

X1,Y1

X2,Y2

X3,Y3

X5,Y5

X0,Y0

 This is

the most complicated

example

X0,Y0

X7,Y7

W

1

W

2

H

1

H

2

end of

page

start of

page

H

F

RM

LM

C

(A)

(B)

Fig. 1. Position of areas of interest in a page (A) and some possible text polygons (B)

Rendering module produces final, desirable representation of a page – M-Tree (in further text MT). MT extends the concept of mT by incorporating coordinates for each n (N \ Ndesc .

3. Defining heuristics for recognition of common areas of interest

Given the MT of a page and assuming the common web design patterns [9], it is possible to define a set of heuristics for recognition of standard areas in a page such as menu or footer. First, areas of the interest are listed to be header (H), footer (F), left menu (LM), right menu (RM), and center of the page (C). At present there are no exact definitions in the open literature for these page areas (one can think of these areas as groups of objects). Therefore we adopted intuitive definitions of these areas, which rely exclusively upon VS coordinates of logical groups of objects in a page. After careful examination of many different pages on the web, we restricted the areas in which H, F, LM, RM, and C can be found. Before we describe what is recognized to be H, F, LM, RM, and C, we will introduce the specific partition of a page as it is shown in figure 1-A.

We set W1 = W2 to be 30% of the page width in pixels determined by rightmost margin among nodes from MT. W1 and W2 define LM and RM respectively which are locations where LM and RM can be exclusively found. We set H1 = 200 pixels and H2 = 150 pixels. H1 and H2 respectively define H and F, which are locations where H and F can be exclusively found. In the following, we briefly describe the heuristics that we used to discover header and left menus of pages. For lack of space, we skip the remaining heuristics used to discover the other constituents of the pages.

Heuristic 1: H consists of all nodes from MT that satisfy one or more of the following conditions:

1. Subtree S of MT with its root rS belongs to H iff rS is of type n<TABLE> and completely belongs to H (i.e. upper bound of a table is less than or equal to H1).

2. Subtree S of MT with its root rS belongs to H iff upper bound of rS is less than or equal to m and does not belong to subtrees found in 1. Number m is the maximum upper bound of all n<TABLE> nodes found in 1. (
Heuristic 2: LM consists of all nodes from MT that are not contained in H and satisfy one or more of the following conditions:

1. Subtree S of MT with its root rS belongs to LM iff rS is of type n<TABLE> and completely belongs to LM (i.e. right bound of a table is less than or equal to W1).

2. Subtree S of MT with its root rS belongs to LM iff rS is of type n<TD>, and completely belongs to LM, and n<TABLE> to which this rS belongs has lower bound less than or equal to H1, and upper bound greater then or equal to H2. (
4. Experimental results

An experiment is performed to show how efficient can be recognition process using only spatial information given by MT. The setup of the experiment was as follows:

1. Construct the dataset D that contains sufficient number of pages from different sites.

2. Scan each document in D, manually labelling H, F, LM, RM, C areas.

3. Perform automatic extraction of MT for each page in D. Perform automatic recognition of areas of interest using defined heuristics on MT.

4. Estimate how well areas are recognized using manually labeled D as a reference point.

Step 1 is conducted by downloading nearly 16000 pages from the open source directory DMOZ
 as a starting point for our crawler. We downloaded nearly 1000 files from the first level of every root category. D is constructed from the downloaded set by randomly choosing 515 files, uniformly distributed among categories and also in size. Two persons performed step 2 once. Second person was a kind of control and ultimate judge for labeling. Step 3 is performed using a tool (called Siena Tree) that includes MT builder and logic for applying recognition heuristics. Siena Tree is written in Java 1.3 and can be used to visualize objects of interest from a web page. Again, two persons in step 4 make judgment of recognizer performance by entering into each labeled file and comparing automatic labels with hand made labels from step 2. After step 4 we got the results shown in table 1.

In order to discuss results notions of “bad” or “good” in recognition process have to be clarified. If area X exists but it is not labelled at all, or if X does not exist but something is labelled as X, then mark “not recognised” is evidenced. If less than 50% of objects that belong to X are labelled, or if some objects out of X are labelled too, then mark “bad” is evidenced. Mark “good” is evidenced if more than 50% but less than 90% of objects from X are labelled and no objects out of X are labelled. Mark “excellent” isevidenced if more than 90% of objects from X and no objects out of X are labelled. Since recognition of
C is, according to heuristic 5, complementary to recognition of other areas, we did not include it in performance measurements.

Results from Table 1 (column “overall”) are obtained by introducing the total score S for the page P as a sum of all marks for recognition of all areas of interest. If X({H, F, LM, RM} is “not recognized” then corresponding mark is 0. Marks “bad”, “good”, and “excellent” are mapped into 1, 2, and 3 respectively. Now, if S = 12 we assume recognition process for particular file (page) is “excellent”. Similar “good”

	
	Header %
	Footer %
	Left Menu %
	Right Menu %
	Overall %

	Not recognized
	25
	13
	6
	5
	3

	Bad
	16
	17
	15
	14
	24

	Good
	10
	15
	3
	2
	50

	Excellent
	49
	55
	76
	79
	23

Table 1. Success in recognition process (in %). Shaded rows represent successful recognition.

stands for 8 (S < 12, “bad” stands for 4 (S < 8, and “not recognized” stands for S < 4. Analyzing pages that perform as “bad” or “not recognized” we found that in nearly 20% the MT was not quite correct but the mT was correct i.e. rendering process was not good enough. Typical error is that portions of a page are internally good rendered but they are scrambled as a whole. For the rest of 80% of “not recognized” and “bad” recognized pages we suppose defined heuristics are not sufficient enough. Finally we selected values for margins H1, H2, W1, and W2 according to statistics from [9].

5. Page classification using visual information

The rendering module provides an enhanced document representation, which can be used whenever the traditional bag-of-words representation can not capture the complex structure of a Web page (i.e. page ranking, crawling, document clustering and classification). In particular, we have performed some document categorisation experiments using the rich representation provided by the renderer.

At the time of writing, there is not a data set of Web pages, which has been commonly accepted as a standard reference for classification tasks. Thus, we have decided to create our own. After extracting all the URLs provided by the first 5 levels of the DMOZ topic taxonomy, we selected the 14 topics at the first level of the hierarchy (we rejected topic “Regional” which features many non-English documents). Each URL has been associated to the class (topic) from which it has been discovered. Finally, all classes have been randomly pruned, keeping only 1000 URLs for each class. Using a Web crawler, we downloaded all the documents associated to the URLs. Many links were broken (server down or pages not available anymore), thus only about 10.000 pages could be effectively retrieved (an average of 668 pages for each class). These pages have been used to create the data set
.

Such data set can be easily replicated, enlarged and updated (the continuous changing of Web format and styles does not allow to employ a frozen data set since after few months it would be not representative of the real documents that can be found on the Internet).

	
	Correct (no visual)
	Correct (visual)
	Total

	Arts
	105
	176
	324

	Business
	123
	224
	316

	Computers
	129
	182
	319

	Games
	141
	212
	339

	Health
	271
	284
	380

	Home
	284
	269
	348

	Kids&Teens
	81
	171
	343

	News
	198
	218
	336

	Recreation
	161
	161
	338

	Reference
	232
	180
	320

	Science
	121
	163
	335

	Shopping
	126
	203
	304

	Society
	194
	180
	337

	Sports
	145
	222
	341

	Total
	2311 (49%)
	2845 (61%)
	4680 (100%)

Table 2. Comparison of the classification accuracy of a Naive Bayes classifier when taking into account a bag-of-words representation of the page versus a mixture of Naive Bayes classifiers taking into account the visual apparence of documents. Information carried by the visual apparence increases classification accuracy of more than 10%.

5.1. Naive Bayes Classifier

The Naive Bayes classifier [11] is the simplest instance of a probabilistic classifier. The output p(c|d) of a probabilistic classifier is the probability that the pattern d belongs to class c (posterior probability).

The Naive Bayes classifier assumes that text data comes from a set of parametric models (each single model is associated to a class). Training data are used to estimate the unknown model parameters. During the operative phase, the classifier computes (for each model) the probability p(d|c) expressing the probability that the document is generated using the model. The Bayes theorem allows the inversion of the generative model and the computation of the posterior probabilities (probability that the model generated the pattern). The final classification is performed selecting the model yielding the maximum posterior probability.

In spite of its simplicity, the Naive Bayes classifier is almost as accurate as state-of-the-art learning algorithms for text categorization tasks [12]. The Naive Bayes classifier is the most used classifier in many different Web applications as focus crawling, recommender systems, etc. For all these reasons, we have selected such classifier to measure the accuracy improvement provided by taking into account visual information.

5.2. Classification results
The data set was split into a training and a test set of equal size. First, a Naive Bayes classifier was trained on all the words in the documents. Such classifier is usually constructed when not considering visual information and it provides a baseline to validate the effectiveness of the proposed data representation. In order to classify a page taking into account its visual appearance, each page of the training and test sets was processed, extracting the bag-of-words representation of its 6 basic constituents: 1) left menu, 2) right menu, 3) footer, 4) header, 5) center and 6) title and meta-tags. Then, we created 6 Naive Bayes classifiers where the i-th classifier was trained using the bag-of-words representations of the i-th constituents of the documents (i.e. the third classifier has been trained on the words belonging to the footer of the documents).

When classifying a document, the i-th classifier assigns a score to the document equal to pi(c|d). Mixing the scores of each single classifier performs the final decision. The mixture is performed assigning to the i-th classifier a weight wi taking into account the expected relevance of the information stored into a specific part of the page:

p(c|d) =(i wi * pi(c|d)
In particular, after some tuning we have assigned the following weights to each classifier: left menu 0.05, right menu 0.04, footer 0.01, title and meta-tags 0.3, center 0.5, header 0.1.

Table 2 shows the classification results of the proposed method. Taking into account the visual appearance of the page provides an improvement of more than 10% in the classification accuracy.

6. Conclusions

This paper describes a possible representation for a web page in which objects are placed into well-defined tree hierarchy according to where they belong in an HTML structure of a page. Each object (node of the tree) carries information about its position in a browser window. This spatial information enables us to define heuristics for recognition of common areas such as header, footer, left and right menus, and center of the page. The crucial difficulty was to develop sufficiently good rendering algorithm i.e. to imitate behavior of popular user agents such as Internet Explorer. Experimental results show that our system can recognize targeted areas in 73% of cases.

Some preliminary results have shown that spatial information is important to classify Web documents. Classification accuracy of a Naive Bayes classifier was increased of more than 10%, when taking into account the visual information. In particular, we constructed a mixture of classifiers each one trained to recognise words appearing in a specific portion of the page. In the future, we plan to use Neural Networks to find the optimal weights of our mixture of classifiers. We hope our system will improve focus crawling strategies [4] by estimating importance of the link based on its position and neighborhood. We believe that taking into account spatial information of documents can find its application in many other areas related to search engines, information retrieval and data mining from the Web.

References

1. Quinlan, J.R., “Induction of decision trees”, Machine Learning, 1986, pp. 81-106.

2. Salton, G., McGill, M.J., An Introduction to Modern Information Retrieval, McGraw-Hill, 1983.

3. Chakrabarti S., van den Berg M., Dom B., “Focused crawling: A new approach to topic-specific web resource discovery”, Proceedings of the 8th Int. World Wide Web Conference, Toronto, Canada, 1999.

4. Diligenti M., Coetzee F., Lawrence S., Giles C., Gori M., “Focused crawling using context graphs”, Proceedings of the 26th Int. Conf. On Very Large Databases, Cairo, Egypt, 2000.

5. Rennie J., McCallum A., “Using reinforcement learning to spider the web efficiently”, Proceedings of the International Conference On Machine Learning, Bled, Slovenia, 1999.

6. Embley D.W., Jiang Y.S., Ng Y.K., “Record-Boundary Discovery in Web Documents”, Proceedings of SIGMOD, Philadelphia, USA, 1999.

7. Lim S. J., Ng Y. K., “Extracting Structures of HTML Documents Using a High-Level Stack Machine”, Proceedings of the 12th International Conference on Information Networking ICOIN, Tokyo, Japan, 1998

8. World Wide Web Consortium (W3C), “HTML 4.01 Specification”, http://www.w3c.org/TR/html401/ , December 1999.

9. Bernard L.M., “Criteria for optimal web design (designing for usability)”, http://psychology.wichita.edu/optimalweb/position.htm, 2001
10. James F., “Representing Structured Information in Audio Interfaces: A Framework for Selecting Audio Marking Techniques to Represent Document Structures”, Ph.D. thesis, Stanford University, available online at http://www-pcd.stanford.edu/frankie/thesis/, 2001.

11. Mitchell T., “Machine Learning”, McGraw Hill, 1997.
12. Sebastiani F., “Machine learning in automated text categorization”, ACM Computing Surveys, 34(1), pp. 1-47

� The Open Directory Project (DMOZ) is available at � HYPERLINK "http://dmoz.org" ��http://dmoz.org�. It involves thousands of experts, each one constructing a complete and accurate URL repository for his area of expertise. All experts are volunteer editors. Actually, DMOZ is the largest human-edited directory of the Web. DMOZ is completely free and everyone can download and use the directory data.

� We encourage other research group to employ such data set in order to provide a comparison among different classification algorithms. The data set can be downloaded from: � HYPERLINK "http://nautilus.dii.unisi.it/download/webTextClassificationDataset.tar.gz" ��http://nautilus.dii.unisi.it/download/webDataset.tar.gz�.

_1082324441.vsd

