Performance Study of the Filter Data Cache

on a Superscalar Processor Architecture

Julio Sahuquillo, Salvador Petit, Ana Pont* Veljko Milutinovic

Dept. Informatica de Sistemas y Computadores Departament of Computer Engineering

 Universidad Politecnica de Valencia School of Electrical Eng., University of Belgrade

 Cno. De Vera s/n, 46071 Valencia (Spain) POB 35-54, 11120 Belgrade, Serbia, Yugoslavia

 {jsahuqui,spetit,apont}@disca.upv.es VM@etf.bg.ac.yu

Abstract
The goal of cache design is to exploit data localities; however, the means to this end vary widely among the cache proposals. This paper concentrates on those cache models that split the first level data cache into two independent organizations that are accessed at the same time by the processor.

In a previous paper, we introduced the Filter Data Cache as a scheme that maintains the most heavily referenced blocks in a very small cache placed in parallel with a larger classical first level cache. We showed that on a single-issue processor our scheme performs better block management than two other schemes that split the first level data cache according to the criterion of data locality (NTS and SSNS).

In this paper, we check the performance of the Filter Data Cache on a state-of-the-art superscalar processor that achieves a better speedup and a higher number of instructions per cycle (IPC). The results show that our scheme performs better than the other compared schemes that split the cache.

Keywords—split data cache, data locality, reuse information, performance evaluation, superscalar processors.

1. Introduction

From the moment cache memories were introduced [1] to reduce processor-memory gap until the present day, these memories became an essential mechanism for achieving good performance in nearly all kinds of processors.

Current processors improve performance by using aggressive techniques to exploit instruction level parallelism (ILP). These techniques include: multiple instruction issue; out-of-order scheduling; non-blocking caches; and speculative execution. The cache design in ILP processors is much more complex than it was in previous processor-cache generations. For instance, non-blocking caches permit multiple memory references to be outstanding; and multiple ports mean several memory references can be satisfied in the same processor clock, etc. In these superscalar processors, data cache latency is the main critical delay. Their impact on processor performance is likely to increase in future processor generations: (as processor issue width increases, the number of ports in caches increases, and number of misses that can be handled simultaneously increases, and so on.

Recent cache research has focused on multiple aspects; for instance, placement and replacement policies, new organizations, and cache bypassing techniques for data exhibiting poor locality. Although all cache memory designs try to exploit data localities, the means to this end vary widely among the different cache schemes appearing on the literature. A common point among an important set of recent designs is the splitting of the first level data cache into two independent organizations. Proceeding in this way, each is targeted to store data showing a given characteristic, and the geometry (block size, number of ways, and cache size) is matched to the data to be cached.

In a previous paper [13], we introduced the filter cache scheme, and we checked its performance against two other schemes (the NTS [4] and SSNS [5]) that split the cache according to the criterion of data locality. In [13] we analyzed and compared the tour management on a single-issue processor for the three different schemes. In this paper, we run simulations (for basically the same schemes) on a superscalar state-of-the-art processor. We concentrate on the impact on the effective IPC (instructions per cycle), and the speedup offered. Our results show that the Filter Cache achieves a performance similar to a conventional cache more than twice as large.

The rest of this paper is organized as follows. Section 2 summarizes previous related work. Section 3 presents the details of the compared solutions. Section 4 introduces the architecture of the processors and the simulation results. Finally, conclusions are summarized in Section 5.

2. Existing Schemes that Split the Cache

In this section we review the concept of reuse information and we describe a representative set of split cache schemes that can be found in the literature. The solutions used to check the performance of the filter cache scheme are presented in more detail.

2.1. Concept of Reuse Information

Among the various schemes, some ([2], [3], [4], [5], [6], [9], [11], [13], [14]) gather information about the block behavior while the block is in cache (current information). This information is saved in a level of the cache hierarchy (first [11], second [13] or both levels [14]); and then it is used when deciding into which subcache the block is to be placed when it is referenced later (and that access results in a cache miss. The infor-mation used for placement decisions is called reuse information. Figure 1 shows the block diagram of a scheme that stores the reuse information in a table in the first level cache. The studied schemes have two caches at the first level, the larger one, or "main cache"; and a smaller cache that usually works as an assistant to improve performance.

[image: image1.wmf]Arrays of Data

Tags

 and

Data

Tags

 and

Data

Tags

Table

Reuse

 Info.

Current

 Usage

 Info.

Current

 Usage

 Info.

?

L2 cache

 L1 cache

TRI

 L1 cache

 Assistant cache

 Main cache

Figure 1. Current and reuse information block diagram in a first-level split data cache.

2.2. Schemes Managing Reuse Information

The criterion of data locality has been widely exploited among the different schemes proposed in the literature. Two earlier proposals for handling spatial and temporal localities in separate caches were introduced in [2], [3]; however, both localities can appear together, or not appear at all. In the STS scheme [4], the cache is split by giving priority to the temporal locality, and so blocks exhibiting some temporal locality are cached in a large organization, while those that do not exhibit any temporal locality are cached separately in a smaller organization. In [5], a scheme giving priority to the spatial locality is proposed. In [6], the first level data cache is split into three organizations, one of which caches those lines exhibiting temporal and spatial localities together, another caches lines exhibiting only spatial locality, and the third organization only caches lines showing temporal locality. To avoid introducing pollution into the cache, some schemes propose bypassing those cache lines that are infrequently referenced [10]. Other schemes propose storing these lines in a small bypass buffer [7]. The Filter Cache [9] tries to maintain the heavily referenced blocks in a small subcache. On eviction, these blocks move to the larger subcache.

2.3. Schemes Non-Managing Reuse Information

One earlier attempt extensively referenced in the literature is the Victim cache [8], that retains the most recent conflict lines in a small cache between the first level and the second level of the memory hierarchy, by using a bi-directional datapath. The Assist cache [15] tries to reduce conflict misses by adding a small fully associative cache. The Allocation By Conflict scheme [12] tries to take replacement decisions based on the behavior of the conflict block allocated in the “main subcache".

3. Details of the Compared Solutions

3.1. The Filter Data Cache

This model has a very small “filter” cache in the first level, in addition to a large “main cache”. The scheme tries to identify the most heavily referenced lines and places them in the small “filter cache” ([9], [13]).

Each cache line has a 4-bit attached counter showing the number of times that it has been referenced. When the access results in a hit in any subcache, the counter is increased. If the access results in a miss in both subcaches, the counter of the referenced line is compared with the counter of the conflict line in the Filter Cache in order to decide in which subcache the referenced line will be placed. If the counter value of the referenced line is lower than the counter value of the conflict block placed in the Filter Cache, then the miss line is placed in the main cache. Otherwise, the model assumes that the miss line is more likely to be referenced again than the conflict line, and so it is placed in the Filter Cache. As the lines in the Filter Cache have shown a high frequency reference, when they evict the cache they will move using a unidirectional datapath to the main cache to spend more time in the first-level. The counter value (four bits) is the only information that is saved to be reused later when lines are evicted from the first level cache.

From time to time, each line counter is shifted to ensure that lines with good temporal locality during just a phase of their execution remain in the Filter Cache when their temporality drops.

3.2. NonTemporal Streaming Cache (NTS)

In the NTS cache [4] proposed by Rivers et al. the data is dynamically tagged as temporal or non-temporal. The model shows a large temporal cache placed in parallel with a small non-temporal cache. Each line in the temporal cache has a reference bit array attached, in addition to a non-temporal (NT) bit. When a block is placed in the temporal cache, each bit in the reference bit array is reset; and the NT bit is set. When a hit occurs in this cache, the bit associated with the accessed word is set. If the bit was already set (meaning that the word had already been accessed), the NT bit is reset to indicate the line showing temporal behavior. When a line is removed from the first level cache, its NT bit flushes to the second level. If the line is referenced again, this bit is checked to decide where it must be placed.

3.3. The Split Spatial / Non-Spatial (SS/NS)

The SS/NS cache was proposed by Prvulovic et al. [5]. This scheme makes a division between spatial and non-spatial data lines, giving priority to lines exhibiting spatial locality. The model introduces a large spatial cache in parallel with a non-spatial cache that is four times smaller. The spatial cache exploits both types of spatial locality (only spatial, or both spatial and temporal). Line size in the non-spatial cache is just one word; thus, only temporal locality can be exploited in this cache. In the spatial cache, the line size is larger than four words.

The spatial cache uses a prefetch mechanism to assist this type of locality. A hardware mechanism is introduced to recompose lines in the non-spatial cache and move them (by a unidirectional data path) to the spatial cache. It uses a reference bit array similar to the one incorporated in the NTS scheme to tag lines, which are tagged as spatial if more than two bits are set; otherwise, they are tagged as non-spatial.

4. Simulation Analysis

4.1. Experimental Framework and Benchmarks

All cache schemes presented in section 3 have been modeled by using the event-driven and timing sensitive mlcache cache simulator [16]. To model the entire state-of-the-art processor, the cache simulator has been integrated into the event-driven, detailed timing Simplescalar tool set [17].

Experiments have been carried out by using the SPEC95 benchmark suite. Table 1 shows the selected benchmarks for this study, the number of instructions issued, and the number of load and stores committed, as well as their percentage of the total.

Benchmark
Input data set
of instruc.
load and stores (%)

cc
training
277.6 M
103.1 M (37.13)

compress95
training
35.8 M
13.4 M (37.43)

go
9 9
132.9 M
36.7 M (27.62)

li
training
183.9 M
78.0 M (42.43)

vortex
training
1500 M
144879 M (35.98)

perl
jumble
1500 M
666.6 M (44.44)

perl
primes
10.5 M
4.7 M (44.72)

perl
scrabbl
40.5 M
18.5 M (45.72)

jpeg
training
24.5 M
7.2 M (29.19)

mk88
training
1500 M
554.3 M (36.95)

Table 1. Benchmarks.

4.2. Architecture Model

Simulation parameters must be chosen according to the technology under study. To select the most important characteristic of the modeled processor we have considered the features of some current processors. For instance, the UltraSPARC-II issues 4 instructions per cycle, incorporates four integer units and three floating point units. The Alpha 21264 microprocessor [19] also has similar characteristics, but it has one less floating point unit. Pentium Pro and Pentium II microprocessors [20] can handle up to four misses at once, and include two data cache ports. As we are interested in knowing how these schemes would impact on a hypothetical future microprocessor, the selected parameters have been inflated. Table 1 shows the characteristics of the modeled processor.

Due to the small working set of the chosen benchmarks, the selected cache sizes do not match current size. However, they are adequate for comparison purposes ([6],[11])

Processor Parameters

Functional units
6 ALUs, 4 FPUs

Issue width
8 instructions per cycle

Issue mechanism
Out-of-order

Instructions latencies
Same as those of MIPS R10000

Register update unit size
256

Branch prediction scheme
Perfect

Cache Hierarchy Parameters

L1 main cache
8 KB, direct mapped, write-back, write-allocate, non-blocking, 4 ports, 32-byte line

L1 assistant cache
1 KB, fully associate, write-back, write-allocate, non-blocking, 4 ports, 32-byte line

L2 cache
 Infinite cache

TRI (table to maintain reuse information)
 128 entries

Latencies (in processor cycles)

L1 (main or assist) hit
1cycle

L1 (main or assist) miss
22 cycles

Table 2. Base machine model.

4.3. Simulation Results

In this section we compare the performance of the three schemes that split the first level cache. In addition, we include the results of two conventional caches; the first is as large as the main subcache (8KB), and the second is twice as large (16KB) as the main subcache. This results in five different schemes.

The Filter Cache searches in order to place the most heavily referenced blocks in the 1KB assist subcache, and therefore we evaluate its effectiveness by using the hit ratio. Table 3 shows the results. The NTS and SSNS schemes show a hit ratio of about 20%, while the Filter scheme achieves a hit ratio twice as large as the others.

Benchmark
NTS
SSNS
Filter

cc
20.41
15.23
48.91

compress
22.55
19.09
67.37

go
13.29
18.70
27.85

li
11.50
17.27
33.98

vortex
31.85
31.93
58.62

perl jumble
16.78
14.49
32.40

perl primes
29.72
16.05
55.37

perl scrabb
19.14
17.76
33.05

jpeg
16.65
17.81
65.75

Average
20.21
18.70
47.03

Table 3. Hit ratio in the 1KB cache.

Accesses to a non-blocking cache in ILP processors may result in one of the following: a hit, a miss or a delayed hit. A delayed hit is "virtual hit" if a returning miss is on its way back to the cache. That means that the hit ratio in non-blocking caches is not so determinant as it is in blocking caches, where its value indicates which scheme performs better. Thus, it is necessary to use other complementary performance indexes. Table 4 shows the IPC of all modeled schemes. On average, the Filter scheme achieves the best IPC (even better than the 16KB conventional cache. In some applications, like go, the effectiveness of the small filter assistant cache is very poor. For instance, when the number of blocks showing high temporal locality is large, not all fit into the small cache memory. In this case, the blocks entering the Filter cache are quickly replaced and moved to the main cache, so lowering the performance.

Benchmark
8 KB
NTS
SSNS
Filter
16KB

cc
3.87
4.06
4.04
4.08
4.15

compress95
3.94
4.07
4.06
4.11
4.14

go
3.22
3.82
3.82
3.76
4.10

li
4.16
4.24
4.24
4.26
4.31

vortex
4.06
4.48
4.43
4.47
4.24

perl jumble
4.21
4.45
4.41
4.63
4.44

perl primes
4.22
4.85
4.61
5.00
4.60

perl scrabb
3.68
4.18
4.07
4.22
4.17

ijpeg
5.02
5.07
5.07
5.11
5.12

Average
4.04
4.36
4.31
4.40
4.36

Table 4. IPC.

On the other hand, movements of blocks prolong the stance of the block in the first level cache where accesses are quicker. This fact helps to improve performances. Figure 2 shows the speedup of the 8KB conventional cache, NTS and NNSN schemes. On average, all the splitting cache schemes performances are close to the 16KB cache. The filter, at 9%, is the scheme that achieves the best speedup. The worst result for the 16KB cache splitting schemes occurs in go where their 9KB (8+1) capacity is too small to fit the entire working set of this application.

[image: image2.wmf]1,00

1,05

1,10

1,15

1,20

1,25

1,30

gcc

compress

go

li

vortex

perl jum

perl pri

perl scr

ijpeg

Speedup

NTS

SSNS

Filter

16KB

Figure 2. Speedup.

From the total simulation time expressed in cycles used to obtain the speedups, we have estimated the theoretical capacity of a conventional cache that would obtain the same performance as the splitting cache schemes. To do this, we have assumed a linear relation between performance and capacity. So, using the 8 and 16 KB caches, we have estimated where the performance of the splitting data cache schemes would be on the line. Table 5 shows the results. The Filter data cache achieves the best performance (obtaining with just 9KB, a performance similar to a hypothetical 18KB data cache.

Benchmark
NTS
SSNS
Filter

cc
13
13
14

compress
13
13
15

go
14
14
13

li
12
12
13

vortex
26
23
25

perl jum
17
15
22

perl pri
21
16
23

perl scr
16
15
17

jpeg
12
12
15

Average
16
15
18

Table 5. Theoretically equivalent conventional cache capacities.

5. Conclusions

The Filter data cache is a scheme that splits the first level data cache. In a previous paper, we analyzed its tour management on a single-issue processor compared with two other schemes that split the cache according to the criterion of the data locality (NTS and SSNS). We selected these schemes to check performance because all three make use of the reuse information with similar hardware complexity. In this paper, we have remodeled all three schemes on a superscalar processor simulator, and we have obtained the equivalent IPC (instructions per cycle) and speedup for the execution time of a conventional cache.

The Filter cache permits blocks evicted from the 1KB cache to move to the main cache (so prolonging the stance of a block in the first level of the memory hierarchy. As caches at this level are quicker, strategic movements between first level caches improve performance. If two multiport caches are placed in the first level, the bandwidth is enlarged and this helps to improve performance. Our results show than all three of the split data cache schemes with a capacity of 9 KB (8+1) obtain performances similar to a conventional cache near twice as large. The best results are those offered by the Filter scheme (on par with a conventional cache of 18 KB.

As future work we plan to incorporate a second filter cache in the first level, and so enlarging the bandwidth; this supposes three independent organizations at the first level. We feel that more organizations at the first level will increase the control hardware, but will enable more accesses to be satisfied, and this seems the current bottleneck in processor-memory organizations.

6. References

[1] M. V. Wilkes, "Slave Memories and Dynamic Storage Allocation.(Transactions of the IEEE vol. EC-14 page 270 (1965).

[2] A. González, Carlos Aliaga, and M. Valero, "A Data Cache with Multiple Caching Strategies Tuned to Different Types of Locality," Proceedings of the ACM International Conference on Supercomputing, Barcelona, Spain 1995, pp. 338-347.

[3] V. Milutinovic, B. Markovic, M. Tomasevic, and M. Tremblay, "The Split Temporal/Spatial Cache: Initial Performance Analysis," Proceedings of the SCIzzL-5, Santa Clara, California, USA, March 1996, pp. 63-69.

[4] A. Rivers and E.S. Davidson, "Reducing Conflicts in Direct-Mapped Caches with a Temporality-Based Design," Proceedings of the 1996 ICPP, August 1996, pp. 151-160.

[5] M. Prvulovic, D. Marinov, Z. Dimitrijevic and V. Milutinovic, "The Split Spatial/Non Spatial Cache: A Performance and Complexity Analysis," IEEE TCCA Newsletter, July 1999, pp. 8-17.

[6] Jesús Sánchez and A. González, "A Locality Sensitive Multi-Module Cache with Explicit Management," Proceedings of the ACM International Conference on Supercomputing, Rhodes, Greece, June 1999.

[7] T. Johnson and W.W. Whu, "Run-time Adaptative Cache Hierarchy Management via Reference Analysis," Proceedings of the ISCA-24, June 1997, pp. 315-326.

[8] N. Jouppi, "Improving Direct-Mapped Cache Performance by the Addition of a Small Fully-Associative Cache and Prefetch Buffers," Proceedings of the ISCA-17, June 1990, pp.364-373.

[9] J. Sahuquillo and A. Pont, "The Filter Cache: A Run-Time Cache Management Approach," Proceedings of the 25th Euromicro Conference, Milan, Italy, September 1999, pp. 424-431.

[10] G. Tyson, M. Farrens, J. Matthews, and A.R. Pleszkun, “A Modified Approach to Data Cache Management,” Proceedings of Micro-28, pp. 93-103, December 1995.

[11] E<.S.Tam, J.A. Rivers, V. Srinivasan, G.S. Tyson, and E.S. Davidson, “Active Management of Data Caches by Exploiting Reuse Information,” IEEE Transactions on Computers, Vol. 48, No. 11, pp. 1244-1259, November 1999.

[12] E.S.Tam, “Improving Cache Performance Via Active Management,” Ph.D. dissertation, University of Michigan, June 1999.

[13] J. Sahuquillo, A. Pont, and V. Milutinovic, "The Filter Data Cache: A Comparison Study with Splitting L1 Data Cache Schemes Sensitive to Data Localities," Accepted in the 3rd International Symposium on High Performance Computing (ISHPC2K), to be held in Yoyogi, Tokyo, Japan (October 16-18, 2000).

[14] T. Johnson, D. A. Connors, M.C. Merten, and W.W. Whu, “Run-time Cache Bypassing,” IEEE Transactions on Computers, Vol. 48, No. 12, pp. 1338-1354, December 1999.

[15] K.K. Chan, C.C. Hay, J.R. Keller, G.P. Kurpanek, F.X. Schumacher, J. Zheng, "Design of the HP PA 7200 CPU," Hewlett-Packard Journal, February 1996, pp. 1-12.

[16] E. S. Tam, J. A. Rivers, G. S. Tyson, and E. S. Davidson, " mlcache: A flexible multilateral cache simulator," In Proc. of MASCOTS'98, PP. 19-26, 1998.

[17] D.C. Burger and T. M. Austin. The SimpleScalar Tool Set, Version 2.0," Computer Architecture News, 25 (3), pp. 13-25, June, 1997.

[18] J. L. Baer, and W. H. Wang, "On the Inclusion Properties for Multi-Level Cache Hierarchies," Proc. 15th ISCA, 1988 pp.73-80.

[19] R. E. Kessler, "The Alpha 21264 Microprocessor", IEEE Micro, Vol. 19, No. 2, March 1999, pp. 24-26.

[20] T. Shanley, Pentium Pro and Pentium II System Architecture, MindShare Inc 1998, Second Edition.

* This work has been partially supported by research grant GV98-14-47

_1032713357.unknown

_1032717238.xls
Gráfico2

		gcc		gcc		gcc		gcc

		compress		compress		compress		compress

		go		go		go		go

		li		li		li		li

		vortex		vortex		vortex		vortex

		perl jum		perl jum		perl jum		perl jum

		perl pri		perl pri		perl pri		perl pri

		perl scr		perl scr		perl scr		perl scr

		ijpeg		ijpeg		ijpeg		ijpeg

NTS

SSNS

Filter

16KB

Speedup

1.0473489561

1.0412318525

1.0507503915

1.0706108651

1.033158932

1.0303643924

1.042728795

1.0498649776

1.1845007147

1.1835587095

1.1647333157

1.2709063851

1.0174376189

1.0172473305

1.0220926704

1.0349491936

1.1025446704

1.0894078699

1.1012600948

1.044297369

1.0561015201

1.0462093878

1.0983475739

1.0520380665

1.1474469817

1.0892371336

1.1814849228

1.0864982718

1.1349649164

1.106073758

1.1463264878

1.1328156506

1.0111657497

1.0104560282

1.0170219761

1.0201832102

Gráfico1

		gcc		gcc		gcc		gcc

		compress		compress		compress		compress

		go		go		go		go

		li		li		li		li

		vortex		vortex		vortex		vortex

		perl jum		perl jum		perl jum		perl jum

		perl pri		perl pri		perl pri		perl pri

		perl scr		perl scr		perl scr		perl scr

		ijpeg		ijpeg		ijpeg		ijpeg

NTS

SSNS

Filter

16KB

Speedup

1.0473489561

1.0412318525

1.0507503915

1.0706108651

1.033158932

1.0303643924

1.042728795

1.0498649776

1.1845007147

1.1835587095

1.1647333157

1.2709063851

1.0174376189

1.0172473305

1.0220926704

1.0349491936

1.1025446704

1.0894078699

1.1012600948

1.044297369

1.0561015201

1.0462093878

1.0983475739

1.0520380665

1.1474469817

1.0892371336

1.1814849228

1.0864982718

1.1349649164

1.106073758

1.1463264878

1.1328156506

1.0111657497

1.0104560282

1.0170219761

1.0201832102

Hoja1

		

		PACT

		Tiempo de Ejecución

		Benchmark		8 Kb		NTS		SSNS		Filter		16KB

		cc		71567496		68332045		68733487		68110844		66847347

		compress		9083710		8792171		8816017		8711479		8652265

		go		41222648		34801708		34829407		35392349		32435629

		li		44164981		43408048		43416168		43210349		42673574

		vortex		369184181		334847368		338885179		335237954		353523998

		perl jumble		355747194		336849429		340034412		323893094		338150496

		perl primes		2487151		2167552		2283388		2105106		2289144

		perl scrabb		10989064		9682294		9935200		9586330		9700664

		ijpeg		4881796		4827889		4831280		4800089		4785215

		speedup sobre 8 KB

				NTS		SSNS		Filter		16KB

		gcc		1.047		1.041		1.051		1.071

		compress		1.033		1.030		1.043		1.050

		go		1.185		1.184		1.165		1.271

		li		1.017		1.017		1.022		1.035

		vortex		1.103		1.089		1.101		1.044

		perl jum		1.056		1.046		1.098		1.052

		perl pri		1.147		1.089		1.181		1.086

		perl scr		1.135		1.106		1.146		1.133

		ijpeg		1.011		1.010		1.017		1.020

		TEORETICALLY EQUIVALENT CACHE

				NTS		SSNS		Filter

		cc		27		26		28

		compress		27		26		30

		go		28		28		27

		li		24		24		26

		vortex		51		47		51

		perl jum		33		30		45

		perl pri		42		32		47

		perl scr		32		29		33

		ijpeg		25		24		30

		average		32		30		35

		IPC

		Benchmark		8 Kb		NTS		SSNS		Assist		Filter		16KB

		cc		3.87		4.06		4.04		4.08		4.08		4.15

		compress95		3.94		4.07		4.06		4.07		4.11		4.14

		go		3.22		3.82		3.82		3.84		3.76		4.1

		li		4.16		4.24		4.24		4.26		4.26		4.31

		vortex		4.06		4.48		4.43		4.49		4.47		4.24

		perl jumble		4.21		4.45		4.41		4.56		4.63		4.44

		perl primes		4.22		4.85		4.61		5.01		5		4.6

		perl scrabb		3.68		4.18		4.07		4.17		4.22		4.17

		jppeg		5.02		5.07		5.07		5.12		5.11		5.12

		Average		4.04		4.36		4.31		4.40		4.40		4.36

						Tasa de fallos

		Demand Misses A

		Benchmark		8 Kb		NTS		SSNS		Filter		16KB

		cc		4438197		2557043		2592994		2704670		2753596

		compress95		819505		682245		676712		703405		701638

		go		3868493		1986280		1633690		2416834		1899219

		li		2693698		2040210		2070891		2084866		2044389

		vortex		32134520		12876844		15370803		15538836		24461907

		perl jumble		17925547		7548083		8361958		8901342		12148389

		perl primes		134604		27974		44946		23818		75749

		perl scrabb		846050		387579		376651		438236		477448

		ijpeg		148764		115284		116258		78973		74952																0

		Demand Misses B

		Benchmark		8 Kb		NTS		SSNS		Filter		16KB																10,000		0.7043		0.2957		0.0000

		cc				312463		531590		266778

		compress95				48575		52115		122212

		go				345202		622551		256925

		li				109854		81838		136517

		vortex				2578484		3734457		1650012

		perl jumble				4028584		4579293		1508652

		perl primes				1602		1494		7081

		perl scrabb				59688		140766		79723

		ijpeg				3286		5044		12937

		Demand Fetches A										Demand Fetches B						Sumatorio de Fetches

		Benchmark		8 Kb		NTS		SSNS		Filter		NTS		SSNS		Filter		NTS		SSNS		Filter

		cc		89493095		71940129		76715613		45682515		19167485		14305670		45940800		91107614		91021283		91623315

		compress95		10593797		8165682		8570942		3213965		2573634		2178910		7688880		10739316		10749852		10902845

		go		32258512		27928795		26029039		22885248		4802997		6755697		10061454		32731792		32784736		32946702

		li		61071788		55026189		51256706		40881764		7330458		11014588		21668473		62356647		62271294		62550237

		vortex		619636147		444264228		432584647		275666418		207607486		208128696		382094729		651871714		640713343		657761147

		perl jumble		590155974		503756725		516488680		418370023		102015046		88083260		196993956		605771771		604571940		615363979

		perl primes		4206297		3047561		3624672		1955366		1289982		696553		2403449		4337543		4321225		4358815

		perl scrabb		15836023		12891934		13087693		10646919		3193244		2962090		5512605		16085178		16049783		16159524

		ijpeg		6817856		5690505		5628805		2331391		1159755		1240465		4580393		6850260		6869270		6911784

		Miss Ratio

		Benchmark		8 Kb		NTS		SSNS		Filter		16KB		8 Kb		NTS		SSNS		Filter		16KB

		cc		4.7		3.1		3.3		3.2		2.9		4.7		3.0		3.0		2.5		0.0

		compress95		7.2		6.4		6.4		7.2		6.1		7.2		5.9		5.9		4.5		0.0

		go		10.7		6.5		6.2		7.4		5.3		10.7		9.4		9.4		8.8		0.0

		li		4.2		3.4		3.4		3.5		3.2		4.2		2.2		2.2		1.9		0.0

		vortex		4.9		2.4		2.9		2.6		3.8		4.9		-0.0		-0.0		-0.9		0.0

		perl jumble		2.9		1.9		2.1		1.7		2.0		2.9		0.4		0.4		-1.2		0.0

		perl primes		3.1		0.7		1.1		0.7		1.7		3.1		0.1		0.1		-0.4		0.0

		perl scrabb		5.1		2.7		3.1		3.1		2.9		5.1		3.6		3.6		3.1		0.0

		ijpeg		2.1		1.7		1.7		1.3		1.1		2.1		1.7		1.7		0.8		0.0

		average		5.00		3.18		3.37		3.42		3.22		5.00		2.91		2.91		2.11		0.00

		1KB cache hit ratio										Main hit ratio

				Benchmark		NTS		SSNS		Filter		NTS		SSNS		Filter

				cc		20.41		15.23		48.91		76.59		81.67		48.63

				compress95		22.55		19.09		67.37		71.55		75.10		28.16										0.0000

				go		13.29		18.70		27.85		77.31		72.05		63.35

				li		11.50		17.27		33.98		86.29		80.38		64.11

				vortex		31.85		31.93		58.62		68.16		66.37		42.30

				perl jumble		16.78		14.49		32.40		82.84		84.94		68.80

				perl primes		29.72		16.05		55.37		70.21		83.50		45.05

				perl scrabb		19.14		17.76		33.05		77.28		78.45		63.82

				ijpeg		16.65		17.81		65.75		81.68		80.80		33.47

						20.21		18.70		47.03

Hoja1

		

NTS

SSNS

Filter

16KB

Speedup

Hoja2

		

Hoja3

		

