EE282 : Computer Architecture
and Organization

Review Session
on Programming Assignment #2
Autumn, 2001

Outline

* You're going to build a pipelined version of
a MIPS-lite machine in Verilog!

e Getting Started
e Three steps of implementing DLX pipeline

1. Insert registers between stages
2. Implement bypassing paths
3. Implement interlocks

Getting Started

* Copy the code:
Cp -r /usr/class/ee282/proj2/* .

e Compile the programs
compile2?282 [source file]

* Run the Verilog model

verilog -f master +waves +regs +output

What to Turn in
Electronically

* Your Verilog code

« README describing the changes you made
to the Verilog code and why. Give us your
feedback on this assignment.

* GROUP file listing members of your group

» The cycle counts for the test programs:
add.s bypass.s interlock.s
bubble.c quick.c

The Big Picture

 From: e TO

— A multi-cycle — Pipelined
implementation implementation

— Work with single- — Work with multiple-
instruction at a time instructions at a time

(up to 5)

— No hazards — Hazards everywhere

— 5 stages/inst. — 5 stages/inst.

— 5 stages total — 5 stages total

The First Step: Insert Registers
between Stages

e What is pipelining?
— Exploiting instruction-level parallelism by overlapping
the execution of consecutive instructions.

We need registers between
stages

IM

Refer to the textbook (Ch. 3) and the lecture
notes for detailed explanation.

Verilog Model for Pipelined
Registers

Is provided in ff.v
module propagate (in, stall, reset,
out);

Instantiate like this:
propagate #(4) demo_ff (in_state, 1’bO0,
1"b0, out_state);

Use #(width) field to specify the bit width of
the flip-flop.

Testing

 After finishing the first step, test your code

with add_nop. s.

* add_nop.s doesn’t have pipeline
hazards at all (it explicitly has NOPs
between dependent instructions), so your
code should work with it!

* If this works, great! You may wish to
create your own test cases to confirm
correctness.

add_nop.s

nop
nop
add
nop
nop
sSw

$2,
$3,

$4,

$4,
$31

0x160($0)
0x164($0)

$3, $2

0x168($0)

/*
/*

/*

/*

load a */
load b */

c=a+b */

store ¢ */

The Second Step: Implement
Bypassing Paths

* QOur pipelined model is not yet complete. Why?
— There are data hazards (RAW hazard).
For example,

the incorrect value of R1 will be used in SUB
instruction.

*How do we solve this problem? Use bypassing!!

What Bypassing Paths do we
need?

i [1F [D [EX MEM W]
el [IF [ID [EX MEM WB]
i+2: _
43 [1F [1D [EX MEM W]

Bypassing Paths (cont’d)

Duick
Compare

¥

>
Register

File

How to Implement Bypass
Paths

» Use multiplexors and control logic (e.g.
comparators).

Data ||
Memory

Testing Bypassing

* When the second step is done, test your
code with bypass. s

* You may wish to create additional test cases
(manually insert NOPs when needed)

* If these test programs work, go to the last
step - implementing interlocks!

The Third Step: Implement
Interlocks

* QOur pipelined model is still not complete.
* Load interlock - we need to stall 1 clock
cycle for the following sequence:

1w R2, 200 (R3)
add R4, R2, RI1

IF | ID | EX |MEM| WB

Implement Interlocks
(cont’d)

e Assume predict-not-taken scheme

 Stall 1 cycle for taken branch (control
hazard)

Not taken branch

Taken branch

Testing Interlocks

* If you finish all three steps, you are done!!

e Test your complete pipelined machine with
the following test programs:

interlock.s bubble.c quick.c
* When all these programs work, be happy.
* Follow online submit instructions.

* Get some sleep.

