iv
iii

	[image: image40.png]59 kluwer

the language of science

	
	
	
	

	SELECTED TOPICS
IN
WEB PROGRAMMING
	

	
	
	
	

	
	Nikola Škundrić

Veljko Milutinović

Erich Neuhold

	Ivana Vujović

Darko Milutinović

Aleskandar Stojanovski

	

	
	Foreword:

Harold Kroto, Nobel Laureate
	

Contents
Foreword (TV is Dead – Long Live the WEB)
v
1Introduction

5ASP.NET in Action

61.1 Configuration Files

8Customizing Sections

101.2 Authentication Using ASP.NET

11Authentication Tickets

13Role-based Authentication

171.3 Exchanging and Storing Information

17Page parameters

18Session variables

19Cookies

211.4 XML Support in ASP.NET

21Creating XML files

22Loading XML files

23Reading from XML files

25Database Access Using ADO.NET and XPath

252.1 Introduction to ADO.NET

26SQL Server 2000 and XML

28SQLXML 3.0 Add-on

282.2 XML Schemes

372.3 XPath Language

402.4 Making Queries

41SQL Queries

43Using DataSets

48XPath Queries

52UpdateGrams

56Handling Errors

57XPath Queries vs. SQL Queries

58Graphics Presentation

593.1 3D Virtual Galleries

603.2 VRML

60Introduction

61Creating Galleries

71Floor plans

773.3 Zooming

79Picture zoom

91Picture panning

96Further improvements

97Content-Oriented Image Search

984.1 The Algorithm

1004.2 Creating histogram

1044.3 Object extraction

108Semantic Web

1085.1 Introduction to Semantic Web

109World Wide Web Today

111Semantic Web Vision

112Semantic Web Definition

114The Principle Ideas behind Semantic Web

1155.2 XML Technologies for the Semantic Web

119XML Instances

124XML Document Type Definition (DTD)

129XML Linking

133XML Schema

140XSLT

144XML Query Language

148Why use XML-based approach to Sematic Web?

1495.3 Defining Vocabularies with RDF

149RDF

156RDF Schema

162Supporting interoperability with RDF

1635.4 Ontologies and Ontology Languages

164DAML+OIL

168OWL

1715.5 Chalanges for the Semantic Web

173Logic and Proof

173The Future

175Acknowledgements

176References and Literature

Foreword

TV is dead – Long Live the WEB

Science, Engineering and Technology are as vital to our intellectual and cultural development (particularly our children’s) as they are to our training to get along in the Modern World. Some efforts to redress the problems involved in the general Public awareness and understanding of science and Engineering (PAUSE) issues are being initiated via the Vega Science Trust (www.vega.org.uk), which aims to take advantage of the revolution in TV and Internet communications technology to improve matters. The best scientists and science communicators are being recorded and the programmes are being broadcast on BBC-TV and the Internet. Furthermore School/University outreach programmes are being developed and Vega is piloting ways in which members of the Science, Engineering and Technology (SET) community can, as individuals and groups, make important contributions. Excerpts from SET programmes will be presented. These efforts present a perspective on SET which places the cultural factors in the foreground and focuses on the intrinsic charisma of science which is hidden from many. It is now crucial that the society in general and the scientific community in particular accept that serious problems are involved in communicating science and the Internet is set to play a major role. Before the invention of the printing press there was only one book in the west – the bible – and it was hand-written by monks. After the invention the printing press book – writing and reading was democratized and this was truly the beginning of general education. In a similar way the birth of the Internet has democratized broadcasting – the broadcasting channels no longer control the dissemination of recorded material – individuals and groups of individuals can now do it themselves and so the Internet has enabled broadcasting to fulfill the promise it has always had – to be a superb educational medium.

Harold Kroto, Nobel Laureate

University of Sussex, Brighton, UK

Introduction

Although humans perceive the world around them in three dimensions (like all other predators), from the earliest times they have mostly used two-dimensional space model. The answer why is rather simple - the lack of appropriate tools. It is relatively easy to draw a picture on a wall or canvas, somewhat harder to make a 3D sculpture but the problem is not how to make a 3D object but how to store it, reproduce it, and share it with other people. In this electronic era, 2D objects are easily digitalized and therefore they can be effortlessly manipulated. In fact, it has not been so until the first printing shops have appeared, but ever since 2D manipulation tools are improving much faster than appropriate 3D tools.

When first computers emerged it was sensible to use LEDs (at first) and then CRT monitors to present data to users, and to use keyboard and mouse as input devices. The very nature of these devices is two dimensional. Naturally, it facilitated the handling of data which could be presented in 2D form but when it comes to 3D, the problems arise. Most of us remember the beginnings of the computer graphics and animation - the first fragile steps towards showing the world as it really is - in 3D.

Although science and technology have drastically improved over the past century, native 3D presenting devices are still in their early stages (mostly just as abstract concepts). A lot of water must run under the bridge until the HoloDeck, 3D operating system (like the one Tom Cruise uses in the movie Minority Report), and similar Sci-Fi devices become reality. Until then, we have to use what we got in the best possible way. Due to imperfection of the human eye, our brain can be successfully tricked by fast moving 2D images to create the impression of 3D reality (the basis of the whole movie and TV technology all the way back since Loumier brothers have created 25 fps cinemascope). Luckily, desktop computers (now days more powerful than mainframe computers have been 30 years ago) have become strong enough to support rich and vibrant graphics animation, real-time 3D scene rendering, and process enough data to create virtual cyber worlds.

In spite of all the technologies available for creation of quasi 3D worlds, they are applied mostly in gaming industry. Not to say it is bad thing, but we would like to see these technologies used for consumer applications (especially on the Internet). Until recently, Internet connection throughput was a big bottleneck. After all, it's not the same to use fast hard drives and processors as opposite to the slow dial-up modem connections. But now, when broadband connections (xDSL, cable, etc.) are widely available to everybody (in technically advanced countries), that ceases to be the limiting factor. A lot of people even use the Internet or local networks to store their personal and other files (in addition to local hard disks), because it is fast enough, they are not limited to using just one computer, and in case of crash or disaster important files are safe and available.

The dominant presentation type on the Web today is still 2D. Even the objects which are three dimensional in real life are shown as multi-angle pictures, Flash animations, or something similar (just check any e-commerce site). It would be a lot more intuitive and closer to human perception if such objects were shown in virtual reality, so they can be rotated and seen from all the different angles just as if you were holding it in your hands. This concept is ideal for commercial purposes like showing or selling products (e.g. machine parts, bicycle parts, consumer electronics, paintings, sculptures, etc.) in whose quality you are certain of and where you need just visual inspection.

This book will address several selected topics in Web programming and Internet presentation, that will give you building blocks to create your own modern, attractive and 3D-capable virtual gallery site (which can be relatively easy transformed to suite other purposes, as mentioned before). In the most part, application stays the same regardless of the objects being displayed (whether it be flat 2D image, 3D object, animation, audio, or something else), and the only thing that should be customized (to the specific needs) is the interface. The idea is to create a framework which can be extended and specialized according to the specific requests, thus allowing always welcomed modularity and code reusability (because in that way the application development costs and time can be significantly lowered).

For this purpose we will use ASP.NET to create thin client (most of the processing is done on the server side and client just provides the user interaction) and VRML language for scene rendering (you can use Cortona VRML browser plug-in, for instance). You will also see how you can implement fast smooth zooming with low bandwidth usage, which can work with acceptable speed even on slower connections. As for the database access we will show you how to use two technologies that ADO.NET provides: standard SQL queries and XML access (through SQLXML 3.0 extension package).

Second part of the book covers the basics of automatic content analysis (in first stage only of flat 2D objects as a step towards 3D object analysis) which can be used instead of manual tagging and keywords system. Related to that problem, we come across the need of semantic analysis, so there is a part on semantic Web, too.

Although "xml" and "semantic" are two famous buzzwords, often used we now real reason just to draw attention, we do hope that you will find this book useful. So, let's waste no more time and get on to the business…

ASP.NET in Action

As you probably know, the .NET framework is Microsoft’s multi-language environment for building, deploying, and running XML Web services and applications. It consists of three main parts: Common Language Runtime, unified programming classes and ASP.NET.

Common Language Runtime is responsible for managing memory allocation, starting up and stopping threads and processes, and enforcing security policy, as well as satisfying any dependencies that the component might have on other components.

The .NET framework provides developers with a unified, object-oriented, hierarchical, and extensible set of class libraries, called unified programming classes, so all programming languages have similar access to the framework and developers are free to choose the language that they want to use.

ASP.NET is the hosting environment that enables developers to use the .NET Framework to simply build ASP Web applications through Web Forms and XML Web Services. It also includes a set of controls that encapsulate common HTML user interface elements, such as text boxes and drop-down menus. These controls, however, run on the Web server (using an object-oriented programming model), and push their user interface as HTML to the browser. ASP.NET also provides infrastructure services, such as session state management and process recycling, which further reduce the amount of code a developer must write and increase application reliability.

With Visual Studio .NET Microsoft introduced its new programming language called C# (C sharp). As Microsoft states: “It is a new object-oriented programming language that is an evolution of C and C++, providing a simple and type-safe language for developing applications”. In fact, if you ask me, it is C++ redesigned to be almost a complete clone of Sun’s Java programming language. (I’m not saying it is a bad thing – on the contrary – but things should be called their real names.) C# used together with ASP.NET (as its code-behind) offers almost the same functionality as Java used with JSP (Java Server Pages) technology. With added database functionality using ADO.NET, it represents excellent tool for creating complex and powerful Web-based applications. Choosing between Java and JSP or C# and ASP.NET is just a matter of personal choice between two development environments – and that’s where the most differences end.

In this book, as you probably noticed, we will use ASP.NET, ADO.NET and C#. From now on, we will assume that you know the basics of the C# and ASP.NET, so we will focus on some more advanced issues you can encounter while creating a Web application.
1.1 Configuration Files

Configuration files are XML files that can be changed as needed. Developers can use configuration files to change settings without recompiling applications, while administrators can use them to set policies that affect how applications run on their computers. There are three types of configuration files: machine configuration files, security configuration files and application configuration files.

The Microsoft .NET Framework offers code access security and role-based security that enables components to determine what users are authorized to do. These security mechanisms are quite simple to use, so developers can easily use role-based security. The main security configuration files should never be altered directly, but instead you should use appropriate configuration tool (Mscorcfg.msc). To open it, click Start• Settings•Control Panel•Adminstrative Tools, and then select Microsoft .NET Framework Configuration. You can also start it from the command line by entering something like this: C:\Winnt\Microsoft.NET\Framework\
<Version number>\mscorcfg.msc. Among other things, this tool has a Security section, where you can view the current framework security configuration, adjust zone security, reset all policy levels, create a deployment package, etc.

The machine configuration file, Machine.config, contains settings that apply to an entire computer. This file is located in the %runtime install path%\Config directory (for example, C:\Winnt\Microsoft.NET\ Framework\v1.0.3705\Config). Machine.config contains configuration settings for machine-wide assembly binding, built-in remoting channels, and ASP.NET. To keep the machine configuration file manageable, it is best to put the configuration settings in the application configuration file, unless it is something common for all the applications that are running on the server (in which case you don't have to put the same settings in several different files).

Application configuration files, on the other hand, contain settings specific to an application. ASP.NET configuration files are called Web.config. Those files are XML-based text files, and you can use any standard text editor or XML parser to create and edit ASP.NET configuration files.

Multiple configuration files, all named Web.config, can appear in multiple directories on an ASP.NET Web application server. Each Web.config file applies configuration settings to its own directory and all child directories below it. Configuration files in child directories can supply configuration information in addition to that inherited from parent directories, and the child directory configuration settings can override or modify settings defined in parent directories. The fore mentioned Machine.config is essentially root configuration file that provides ASP.NET configuration settings for the entire Web server.

At run time, ASP.NET uses the configuration information provided by the Web.config files in a hierarchical virtual directory structure to compute a collection of configuration settings for each unique URL resource. The resulting configuration settings are then cached for all subsequent requests to a resource. Note that inheritance is defined by the incoming request path (the URL), not the file system paths to the resources on disk (the physical paths).

ASP.NET detects changes to configuration files and automatically applies new configuration settings to Web resources affected by the changes. The server does not have to be rebooted for the changes to take effect. Hierarchical configuration settings are automatically recalculated and recached whenever a configuration file in the hierarchy is changed. The <processModel> section is an exception.

ASP.NET protects configuration files from outside access by configuring Internet Information Services (IIS) to prevent direct browser access to configuration files, so any browser attempting to request a configuration file directly will receive HTTP access error 403 (forbidden).

Customizing Sections

The ASP.NET configuration system is extensible, and you can define new configuration parameters and write configuration section handlers to process them. The handler must be a .NET Framework class that implements the IConfigurationSectionHandler interface. The section handler interprets and processes the settings defined in XML tags within a specific portion of a Web.config file and returns an appropriate configuration object based on the configuration settings. The configuration object that the handler class returns can be any data structure; it is not limited to any base configuration class or configuration format.

For instance, let’s see how we can create a database configuration section which we will use later in Chapter 2, together with appropriate handler. First, we need to modify the root Web.config file of our Web application, by adding couple of lines. The easiest way is following:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

 …

 <configSections>

 <sectionGroup name="system.web">

 <section name="dbstore" type="System.Configuration.NameValueSectionHandler, System, Version=1.0.3300.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"

 />

 </sectionGroup>

 </configSections>

 …

 <system.web>

 <dbstore>

 <add key="dbconnection" value="Provider=SQLOLEDB; user id=usr; password=pswd; server=(local); database=MyDatabase; Trusted_Connection=no"

 />

 <add key="scheme_path"

 value="c:\\mydir\\schemas\\"

 />

 </dbstore>

 </system.web>

 …

</configuration>
Now, we can access this configuration section from out Web application like this:

using System.Collections.Specialized;

[Visual Basic]

Namespace System.Web.Configuration

 Public Interface IConfigurationSectionHandler

 Function Create(parent As Object, input As Object, _

 node As XmlNode) As Object

 End Interface

End Namespace

[C#]

namespace MyApp

{

 …

 String dsn = (String) ((NameValueCollection)

 Context.GetConfig("system.web/dbstore"))

 ["dbconnection"];

 String spth = (String) ((NameValueCollection)

 Context.GetConfig("system.web/dbstore"))

 ["schemes_path"];
 …

}

If you, for some reason, do not want to keep the key dbstore inside <system.web> element, you can define your own section that uses the same configuration handler as the <appSettings> section.

For example:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

 <configSections>

 <sectionGroup name="myGroup">

 <sectionGroup name="nestedGroup">

 <section name="mySection"

type="System.Configuration.NameValueSectionHandler, System, Version=1.0.3300.0, Culture=neutral, PublicKeyToken=9b35aa32c18d4fb1

 />

 </sectionGroup>

 </configSections>

 <myGroup>

 <nestedGroup>

 <mySection>

 <add key="dbconnection" value="…" />

 <add key="scheme_path" value="…" />

 </mySection>

 </nestedGroup>

 </myGroup>

</configuration>

In this case, you can read the values from the new configuration section defined in the preceding example as follows:

using System.Collections.Specialized;

[Visual Basic]

Namespace System.Web.Configuration

 Public Interface IConfigurationSectionHandler

 Function Create(parent As Object, input As Object, _

 node As XmlNode) As Object

 End Interface

End Namespace

[C#]

namespace MyApp

{

 …

 NameValueCollection config = (NameValueCollection)

 ConfigurationSettings.GetConfig("mygroup/

 nestedgroup/mysection");

 String dsn = config["dbconnection"].ToString();

 String spth = config["scheme_path"].ToString();

 …

}

[Visual Basic]
1.2 Authentication Using ASP.NET

Authentication is the process of obtaining identification credentials such as name and password from a user and validating those credentials against some authority. If the credentials are valid, the entity that submitted the credentials is considered an authenticated identity. Once an identity has been authenticated, the authorization process determines whether that identity has access to a given resource.

ASP.NET implements three ways of authentication:

· Forms authentication

· Passport authentication

· Windows authentication

The standard and most common way of authentication found on majority of sites is forms authentication. That is a system by which unauthenticated requests are redirected to an HTML form using HTTP client-side redirection. The user provides credentials and submits the form. If the application authenticates the request, the system issues a form that contains the credentials or a key for reacquiring the identity. Subsequent requests are issued with the form in the request headers; they are authenticated and authorized by an ASP.NET handler using whatever validation method the application developer specifies.

To enable authentication in the ASP.NET application, you need to create an entry in the application’s Web.config file as follows:

// web.config file

<authentication mode= "[Windows/Forms/Passport/None]">

</authentication>

The mode is set to one of the authentication methods: Windows (which is default), Forms, Passport, or None. Note that the authentication mode cannot be set at a level below the application root directory. As previously, subdirectories in the URI space inherit authentication modules unless explicitly overridden.

Authentication Tickets

The whole system of form authentication in ASP.NET relies on so called authentication tickets. When a browser requests a protected resource from the server, if no authentication ticket is present in the request form, the server redirects the request to the logon page. Browser then follows the redirection to the logon page, where user enters credentials on the logon form. After the credentials are sent back to the server, it validates them, and if authenticated, redirects the browser to the original URL retrieved from the logon ticket. At the same time, the authentication ticket is issued as a cookie. This is a potential pitfall: be careful not to set your firewall cookie control too high, because it can misinterpret the authentication ticket as privacy intrusion cookie and filter it out – consequently your will not be able to access any of the protected pages on the server. This can happen if you use third-party firewall software privacy controls (like the ones from ZoneAlarm or Sygate Personal Firewall) – if you use IE’s internal privacy control tools, everything works just fine.

The simplest way to provide credentials validation is to store valid user/password pairs in the <credentials> section under <system.web> in the application configuration file (web.config), as given in the following example:
…

<system.web>

 …

 <machineKey validationKey="AutoGenerate"

 decryptionKey="AutoGenerate"

 validation="SHA1"/>

 <authentication mode="forms">

 <forms forms="my.aspxauth"

 loginurl="/login.aspx"

 protection="All"

 timeout="120">

 <credentials passwordFormat=SHA1>

 <user name="John Doe"

password="22EA1C649C82946AA6E479E1FFD321E4A318B1B0"/>

 <user name="Jane Doe"

password="BA7157A99DFE9DD70A94D89844A4B4993B10168F"/>

 </credentials>

 </forms>

 </authentication>

 …

</system.web>

…

Let's take a closer look at this. As you can see, forms-based authentication is configured by the <forms> element in a configuration file. Its attributes are:

· name – Specifies the HTTP cookie to use for authentication. Default value is .ASPXAUTH. If multiple applications are running on a single server and each application requires a unique cookie, you must configure the cookie name in each application's Web.config file.

· loginUrl – Specifies the URL to which the request is redirected for logon if no valid authentication ticket is found. The default value is default.aspx.
· protection – Specifies how the authentication ticket is protected from spoofing and/or alteration. Available options are:
· All – Specifies that the application uses both data validation (as given in the <machineKey> element) and encryption (3DES if possible) to protect the cookie. This is default and recommended value.

· None – Specifies that both encryption and validation are disabled. This option will provide really miniscule level of protection (if it can be called like that at all).

· Encryption – Specifies that the cookie is encrypted using 3DES, but data validation is not performed on the cookie, so it can be altered during transit without detection.

· Validation – Specifies that a validation scheme verifies that the contents of an encrypted cookie have not been altered in the transit. The cookie is created using cookie validation by concatenating a validation key with the cookie data, computing a Message Authentication Code, and appending the Message Authentication Code to the outgoing cookie.

· timeout – Specifies the amount of time, in integer minutes, after which the cookie expires (counting from the last time request was received). The default value is 30.
Next interesting tag is the <credentials> element. In our example, the usernames are stored as clear text, while the password itself is written as SHA1 hash digest. The passwordFormat attribute is required and it can have following values:

· Clear – passwords are stored as clear text, which is not a very good idea.

· MD5 – passwords are stored using Message Digest 5 (MD5) hash digest. This is faster but less secure hash algorithm.

· SHA1 – passwords are stored using Secure Hash 1 (SHA1) algorithm. This is slightly slower, but offers greater security.

Role-based Authentication

Things are a little bit more complicated if you want to provide several different user-roles, with different access rights. If you want to do so, you will have to make several adjustments and to reduce the level of automation in the authentication process. Consequently, you can forget about using <credentials> element for storing username/password pairs.

First adjustment has to be made on logon page (login.aspx to continue our example), since we have to make our own customized authentication ticket:

private void BtnLogin_Click(object sender, System.EventArgs e)

{

 …

 if (AuthenticateUser(sUsername, sPassword,

 ref Role, ref bPersistentCookie))

 {

// Initialize the default FormsAuthentication

FormsAuthentication.Initialize();

// Create a new ticket used for authentication

FormsAuthenticationTicket ticket =

 new FormsAuthenticationTicket(

 // Ticket version
 1,

 // Username associated with the ticket
 sUsername,

 // Date/time issued

 DateTime.Now,

 // Date/time to expire

 DateTime.Now.AddMinutes(120),

 // "true" for a persistent user cookie
 bPersistentCookie,

 // User-data, in this case the roles

 Role,

 // Path cookie valid for

 FormsAuthentication.FormsCookiePath);

 // Hash the cookie for transport

 string hash = FormsAuthentication.Encrypt(ticket);

 HttpCookie cookie = new HttpCookie(

FormsAuthentication.FormsCookieName,

hash);

 Response.Cookies.Add(cookie);

 // Redirect to requested URL, or homepage

 // if no previous page requested

 string retUrl = Request.QueryString["ReturnUrl"];

 if (returnUrl == "") returnUrl = "default.aspx";

 Response.Redirect(returnUrl);

 }

 …

}

Note that we did not use FormsAuthentication.RedirectFrom LoginPage function, since it could replace the authentication ticket we just added.

Next stop is Global.asax.cs file in the root catalog of the Web application, and its function Authentication_AuthenticateRequest. This function is automatically executed on authentication request, and we need to fill it with our own data. The new function should look something like this:

protected void Application_AuthenticateRequest(Object sender, EventArgs e)

{

if (HttpContext.Current.User != null) {

 if (HttpContext.Current.User.Identity.IsAuthenticated){

 if (HttpContext.Current.User.Identity

 is FormsIdentity){

 FormsIdentity id =

 FormsIdentity)HttpContext.Current.User.Identity;

 FormsAuthenticationTicket ticket = id.Ticket;

 // Get the stored user-data, in this case our roles

 string userData = ticket.UserData;

 string[] roles = userData.Split(',');

 HttpContext.Current.User =

 new GenericPrincipal(id, roles);

 }

 }

 }

}
Now when each user is given its role, it is time to make some use of it. For that purpose we will use another element from Web.config: the <authorization> tag. This tag is used to control client access to URL resources. The syntax is following:

<authorization>

 <allow users="comma-separated list of users"

 roles="comma-separated list of roles"/>

 <deny users="comma-separated list of users"

 roles="comma-separated list of roles"/>

</authorization>

At run time, the authorization module iterates through the <allow> and <deny> tags until it finds the first access rule that fits a particular user. It then grants or denies access to a URL resource depending on whether the first access rule found is an <allow> or a <deny> rule. The default authorization rule in the Machine.config file is <allow users="*"/> so, by default, access is allowed unless configured otherwise.

The idea is following: group the pages by access rights into different directories, and in each one add a Web.config file defining which groups can access its contents. And that is it. Pretty neat, don’t you think?

The following example allows access to all members of the Admins and PowerUsers roles, and denies access to all other users.

<configuration>

 <system.web>

 <authorization>

 <allow roles="Admins, PowerUsers" />

 <deny users="*" />

 </authorization>

 </system.web>

</configuration>

In case the users of several groups (roles) have the access to the same directory, like in the example above, and you need to know the exact role of particular user currently accessing some page, you can use the following piece of code:

public string GetUserRole()

{

 if (HttpContext.Current.User.Identity.IsAuthenticated)

 {

 FormsIdentity id =

 (FormsIdentity)HttpContext.Current.User.Identity;

 FormsAuthenticationTicket ticket = id.Ticket;

 // Get the stored user-data, in this case our roles

 string userData = ticket.UserData;

 string[] roles = userData.Split(',');

 return String.Copy(roles[0]);

 }

}

1.3 Exchanging and Storing Information

When creating a Web application, usually there is a need for calling other active server pages using some parameters, or to temporarily (or permanently) store some data, such as shopping carts, customized layouts, etc. The standard way for doing so is to use page parameters (which are transferred along with the URL and are visible to user) and session variables (sort of application-global variables, kept in browser's memory during an active session). Third option is to use cookies, which are primarily used for content customization, remembering user's settings, identification purposes, etc.

Page parameters

Two important ASP.NET’s classes, you probably already encountered with, are HttpRequest and HttpResponse, both members of System.Web namespace.

Class HttpRequest enables ASP.NET to read the HTTP values sent by a client during a Web request, while HttpResponse encapsulates HTTP response information from an ASP.NET operation. All methods and properties of two fore mentioned classes are exposed through ASP.NET’s intrinsic objects Request and Response.
Just like you use parameters when making a function call, when calling an active server page you can use page parameters. To embed them into URL, just enter question mark after the page name, followed by list of parameters in the format param_name=value, separated by ampersand (&) characters:

pagename.aspx?param1=<value>¶m2=<value>&…

On the destination page, values are easily read-out using HttpRequest’s member function QueryString[parameter].

For example, you can make a call using:

Response.Redirect("showgal.aspx?artistid=5&floorplan=3

&returl=caller.aspx");

and then read the parameters on the destination page with:

string str = Request.QueryString[returl];

These two intrinsic objects are in general very useful, so check your documentation to find out more about them.

Session variables

The basis of every Web Forms page is the Page class, which is associated with files that have an .aspx extension. These files are compiled at run time as Page objects and cached in server memory. If you want to create a Web Forms page using the code-behind technique, you have to derive from this class. Visual Studio .NET automatically uses this model to create Web Forms pages.

The Page object serves as the naming container for all server controls in a page. Here, we are interested in its Session property, which provides information about the current request's session. A Session object is maintained for each user that requests a page or document from an ASP.NET application. Variables stored in the Session object are not discarded when the user moves from page to page in the application; instead, these variables persist as long as the user is accessing pages in your application.

Session variable is created using following syntax:

Session[VarName] = <value>;

The contents of session variable can be read as follows:

String localVar = Session[VarName];

Session variables can be used for storing not only string values, but also all other data types (including user defined). In that case, naturally, we have to use casting:

Session[“AdvancedSearch”] = true;

…

// on some other page
bool bAdvSearch = false;

if (Session[“AdvancedSearch”] != null)

 bAdvSearch = (bool)Session[“AdvancedSearch”];

You probably noticed that prior to accessing the session variable, we checked whether it exists. If you try to access the session variable that does not exist (or is set to a null reference) HttpException will be thrown.

Cookies

The infamous cookies can be very useful when used properly, but since they also can be used for user tracking and spying, and other privacy-intrusion purposes, they became quite notorious. They are, however, needed for proper functioning of some Web sites – fortunately there are many tools on the market that can take care of malicious cookies.

In ASP.NET, you can use HttpCookie class to create and manipulate individual cookies. On the other hand, HttpCookie Collection class provides methods to store, retrieve, and manage all the cookies for an entire Web application. ASP.NET code uses the intrinsic Cookies object to create cookies and add them to the cookie collection. When delivering a Web page to a client, the server sends the entire cookie collection with the Set-Cookie header. These classes for cookie manipulation are members of System.Web namespace.

We will show you how to use permanent cookies to remember users across sessions, so they do not have to login every time. That may not be the best idea from the security point of view, since the cookies can be faked, but for some purposes it can do the job. Never-the-less, look at this as a nice example.

First step is to create a permanent user cookie. This can be done anytime you want, but usually during logon. If you want to limit the lifetime of the cookie so it is valid for only couple of days or so, just replace DateTime.MaxValue in the following code with the desired value:

HttpCookie InfoCookie = new HttpCookie(“UserInfo”);

InfoCookie.Values.Add(“UserName”, “John Doe”);

InfoCookie.Values.Add(“Role”, “Administrators”);

InfoCookie.Expires = DateTime.MaxValue;

Response.Cookies.Add(InfoCookie);
From now on, if user closes the browser without logging out, the permanent cookie will persist on his hard-disk ready to be detected next time our page is accessed.

Logical thing is to delete the permanent cookie when user hits the logout button. Basically, it is done by replacing permanent cookie with in-memory cookie that will be deleted after the browser is closed. It is done like this:

HttpCookie InfoCookie = new HttpCookie(“UserInfo”);

InfoCookie.Values.Add(“UserName”, “John Doe”);

InfoCookie.Values.Add("Role", “Administrators”);

InfoCookie.Expires = DateTime.MinValue;

Response.Cookies.Add(InfoCookie);

The Page_Load member function of the Page object is called every time the page is loaded, so it is a good place to check for permanent cookies. To differentiate whether the page is being loaded and accessed for the first time, or it is being loaded in response to a client postback, you can use the IsPostBack property. During the loading of the main page, we should check if permanent cookie exists – if so, we have to recreate authentication ticket, and fill it with appropriate data. If no permanent cookie is found, it is a good idea to create a guest authentication ticket with temporary id’s and other relevant data, so we can tell between various guest users (if needed). The piece of code that does all the following is given below:

…

private void Page_Load(…) {

…

 HttpCookie InfoCookie = Request.Cookies[“UserInfo”];

 if (InfoCookie != null) {

 FormsAuthentication.Initialize();

 FormsAuthenticationTicket ticket = new
 FormsAuthenticationTicket(

 1,

 InfoCookie.Values[“UserName”].ToString().Trim(),
 DateTime.Now,

 DateTime.Now.AddMinutes(120),

 False,

 InfoCookie.Values[“Role”].ToString().Trim(),

 FormsAuthentication.FormsCookiePath);

 // Hash the cookie for transport

 string hash = FormsAuthentication.Encrypt(ticket);

 HttpCookie cookie = new HttpCookie(
 FormsAuthentication.FormsCookieName, hash);

 Response.Cookies.Add(cookie);

 }

 else {

 // create guest ticket

 …

 }

 …

}[Visual Basic]
Public ReadOnly Property IsPostBack As Boolean
1.4 XML Support in ASP.NET

The System.Xml namespace provides standards-based support for processing XML. Among others, the supported standards are: XML 1.0 with DTD support, XML Namespaces (both stream level and DOM), XSD Schemas, XPath expressions and XSLT transformations. For complete reference, check the provided documentation.

In Web programming, XML files are often used for exchanging information between processes. The need for such exchange mechanism might not be easily perceived if you are using just one operating system and one programming language, but when it comes to inter-process communication between various technologies, XML steps up – after all, unified presentation of data is one the main reasons it was invented at all.

Here, you will learn the basic manipulation with XML files, which will allow you to create and read them.

The main class, whose instances represent the XML documents, is (surprisingly) XmlDocument. This class implements the W3C Document Object Model (DOM), which is actually an in-memory tree representation of an XML document that enables the navigation and editing of selected document. If needed, objects of this class can be used as source documents for XSL transformations using XslTransform class.

Creating XML files

The simplest way to create a new XML file is to use LoadXml method from the XmlDocument class. The LoadXml method takes a string argument, containing XML data. This method does not perform DTD nor schema validation, and does not preserve white space. If you do need validation, you will have to use Load method and XmlValidatingReader (both of them will be explained a bit later).

There are number of ways to populate newly created XML file – we will show you one simple method. Additional information can be found in the documentation for the XmlWritter and XmlTextWritter classes.

Let’s create, first, an empty file ready to be filled:

XmlDocument doc = new XmlDocument();

doc.LoadXml("<?xml version='1.0' encoding='utf-8' ?>" +

"<ArtWork>" +

"</ArtWork>");
Next, we should add some elements:

XmlElement root = doc.DocumentElement;

XmlNode newElem = doc.CreateNode(XmlNodeType.Element,

 "Artist", "");

newElem.InnerText = “Hans Baurle”;

root.AppendChild(newElem);

newElem = doc.CreateNode(XmlNodeType.Element,

 "Technique", "");

newElem.InnerText = “Oil on canvas”;
root.AppendChild(newElem);

…

XmlTextWriter writer = new XmlTextWriter("Out.xml",

 System.Text.Encoding.UTF8);

writer.Formatting = Formatting.Indented;
doc.WriteContentTo(writer);

writer.Flush();

writer.Close();
The resulting XML file would look something like this:

<?xml version='1.0' encoding='utf-8' ?>

<ArtWork>

 <Artist>Hans Baurle</Artist>

 <Technique>Oil on canvas</Technique>

 …

</ArtWork>

Loading XML files

To attach some existing XML file to the XmlDocument, we have to use one of the four overloaded Load functions. Two most useful are Load(string filename), and Load(XmlReader reader). In the first overloaded method, filename represents the URL for the file containing the XML document to load. This method does not perform DTD nor schema validation. If you want to use validation, second overloaded method is what you need. To be exact, XmlReader class does not provide validation either. Instead, you have to use XmlValidatingReader, specify the appropriate ValidationType (available options are XDR, DTD, None), and provide ValidationEventHandler. For example:

Loading w/o validation:

…

XmlDocument doc = new XmlDocument();

doc.Load(“test.xml”);

…

Loading w/ validation:
…

XmlDocument doc = new XmlDocument();

XmlTextReader txtreader = new XmlTextReader(“test.xml”); XmlValidatingReader reader =

 new XmlValidatingReader(txtreader);

reader.ValidationType = ValidationType.XDR;

reader.ValidationEventHandler += new

 ValidationEventHandler (ValidationCallBack);

reader.WhitespaceHandling = WhitespaceHandling.None;

reader.MoveToContent();

doc.Load(reader);

…

Naturally, you have to define the specified call back function. It is done as follows:

public void ValidationCallBack (object sender,

 ValidationEventArgs args)

{

 // handle the validation error

 Console.WriteLine("Error: " + args.Message);

 …

}

Reading from XML files

You can use several methods to read data from created XmlDocument. Usually, you will want to locate XML tags by their name, and for that purpose you can use the GetElementsByTagName method (from the XmlDocument class). This method returns an XmlNodeList containing a list of all descendant elements that match the specified name.

Let’s say that we have a following XML file:

<?xml version='1.0' encoding='utf-8' ?>

<bookstore>

 <book>

 <title>Fever Pitch</title>

 <author>

 <first-name>Nick</first-name>

 <last-name>Hornby</last-name>

 </author>

 <price>9.99</price>

 </book>

 <book>

 <title>The Catcher in the Rye</title>

 <author>

 <first-name>J.D.</first-name>

 <last-name>Salinger</last-name>

 </author>

 <price>14.99</price>

 </book>

</bookstore>

and that we want to extract all the book titles from the given file. It can be done as follows:

…

XmlDocument doc = new XmlDocument();

doc.Load("books.xml");

XmlNodeList elemList =

 doc.GetElementsByTagName("title");

for (int i=0; i<elemList.Count; i++)

{

 Console.WriteLine(elemList[i].InnerXml);

}

Database Access Using ADO.NET and XPath

An important part of every advanced Web application is database access. It can be done using ODBC/JDBC drivers, directly through HTTP requests, etc. The .NET Framework offers one more option: ADO.NET.

2.1 Introduction to ADO.NET

ActiveX Data Objects for the .NET Framework (ADO.NET) is a set of classes that expose data access services to the .NET programmer. It is an integral part of the .NET Framework, providing access to relational data, XML, and application data. The only prerequisite for using ADO.NET with some data source is the existence of appropriate data provider (which enables you to connect to data source in order to retrieve and modify data from it). The .NET framework comes with two data providers included:

· SQL Server .NET Data Provider – for Microsoft SQL Server 7.0 or later,

· OLE DB .NET Data Provider – for data sources exposed using OLE DB (most database systems currently available are accessible through this provider).

In case you need it, an ODBC .NET Data Provider is also available as a separate download from the Microsoft’s Web site. If none of the mentioned data providers is suitable for your needs, you can always make your own. You can use minimal set of interfaces, provided by ADO.NET, to implement your own .NET data provider, or write a full-featured OLE DB provider.

ADO.NET cleanly factors data access from data manipulation into discrete components that can be used separately or in tandem. It uses fore mentioned data providers for connecting to a database, executing commands, and retrieving results. Those results are either processed directly, or placed in an ADO.NET DataSet object in order to be exposed to the user in an ad-hoc manner, combined with data from multiple sources, or remoted between tiers. The ADO.NET DataSet object can also be used independently of a .NET data provider to manage data local to the application or sourced from XML.

Note that although .NET Framework includes SQL Server .NET Data Provider, it can handle only traditional SQL queries (plain relational database queries and those using FOR XML clause). If you want to use XPath queries, DiffGrams, etc. through managed classes integrated into ADO.NET, you will have to install SQLXML 3.0 add-on (also available for download at Microsoft’s Web site).

SQL Server 2000 and XML

Microsoft SQL Server 2000 introduces new features that support XML functionality. The combination of these features makes SQL Server 2000 an XML-enabled database server. These new features include:

· The ability to access SQL Server using HTTP.

· Support for XDR (XML-Data Reduced) schemas and the ability to specify XPath queries against these schemas.

· The ability to retrieve and write XML data:

· Retrieve XML data using the SELECT statement and the FOR XML clause.

· Write XML data using OPENXML rowset provider.

· Retrieve XML data using the XPath query language.

· Enhancements to the Microsoft SQL Server 2000 OLE DB provider (SQLOLEDB) that allow XML documents to be set as command text and to return result sets as a stream.

Note that Microsoft SQL Server 2000 supports only a subset of the XPath language to query the XML views created by an annotated XDR schema. Figure 2.1 lists the supported and unsupported functionality.

	
	Feature

	Supported
	Axis: attribute, child, parent, and self axis

	
	Boolean-valued predicates

	
	All relational operators: =, !=, <, <=, >, >=

	
	Arithmetic operators: +, -, *, div

	
	Explicit conversion functions: number(), string(), Boolean()

	
	Boolean operators: AND, OR

	
	Boolean functions: true(), false(), not()

	
	XPath variables

	Unsupported
	Axis: ancestor, ancestor-or-self, descendant, descendant-or-self (//), following, following-sibling, namespace, preceding, preceding-sibling

	
	Numeric-valued predicates

	
	Arithmetic operators: mod

	
	Node functions: ancestor, ancestor-or-self, descendant, descendant-or-self (//), following, following-sibling, namespace, preceding, preceding-sibling

	
	String functions: string(), concat(), starts-with(), contains(), substring-before(), substring-after(), substring(), string-length(), normalize(), translate()

	
	Boolean functions: lang()

	
	Numeric functions: sum(), floor(), ceiling(), round()

	
	Union operator: |

Figure 2.1 List of supported and unsupported XPath functionality
in SQL Server 2000

SQLXML 3.0 Add-on

SQLXML add-on extends the functionality of ADO.NET with several XML-related features:

· XML views using annotated XSD schemas: You can create XML views of relational data by using annotated XML Schema Definition language (XSD) schemas, as well as the annotated XML-Data Reduced language (XDR) schemas (introduced in Microsoft SQL Server 2000).

· Client-side XML formatting: In SQL Server 2000, the formatting of an XML document from a rowset that is generated by execution of a query is performed on the server. In Microsoft SQLXML 3.0, the XML formatting can be applied on the client side, too.

· Data access components: Added support for SQLXMLOLEDB Provider (used in plain ADO), and SQLXML Managed Classes which exposes the functionality of SQLXML 3.0 inside the Microsoft .NET Framework. With SQLXML Managed Classes, you can write a C# application to access XML data from an instance of Microsoft SQL Server, bring the data into the .NET Framework environment, process the data, and send the updates back to SQL Server (as a DiffGram) to apply the updates. You must use a mapping schema when applying updates to SQL Server database using the SQLXML managed classes (we will treat this issue in a moment).

· DiffGrams: This format is introduced in the DataSet component of the Microsoft .NET Framework. Within the .NET Framework, you can create DiffGrams and then use them to modify data in tables in a SQL Server 2000 database.

2.2 XML Schemes

You can create XML views of relational data by using the XML Schema Definition (XSD) language. These views can then be queried by using XPath queries. When you specify XPath queries against the schema, the structure of the XML document returned is determined by the schema against which the XPath query is executed.

An XSD schema describes the structure of an XML document and various constraints on the data in it. For instance, it defines elements and attributes that can appear in a document; then it defines which elements are child elements as well as their number and order; it specifies data types for elements and attributes, their default and fixed values, etc.

When working with the relational databases, it is useful to map the arbitrary XSD schema to a relational store. One way to achieve this is to annotate the XSD schema. An XSD schema with the annotations is referred to as a mapping schema, which provides information pertaining to how XML data is to be mapped to the relational store. A mapping schema is, in effect, an XML view of the relational data. These mappings can be used to retrieve relational data as an XML document, instead of the rowset that is returned by SQL queries.

In an XSD schema, the <xsd:schema> is the root element that encloses the entire schema; all element declarations must be contained within it. The <xsd:schema> element is derived from the XMLSchema namespace specification at http://www.w3.org/2001/XMLSchema.

In an XSD schema, annotations are specified by using the namespace urn:schemas-microsoft-com:mapping-schema. The namespace prefix that is used is arbitrary – usually, we use the sql prefix to clearly denote the annotation namespace. So, to sum up, the standard root element of the XSD schema looks like this:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">

 …

</xsd:schema>

In general, there are two types of elements: simple elements, and complex elements.

Simple elements can contain only text, and not any other elements or attributes. “Only text” designation is not completely precise, since the text can be of many different types. It can be one of the types that are included in the XML Schema definition (boolean, string, date, time, integer, decimal, etc.), or it can be a custom type that you can define yourself.

	Constraint
	Description

	Enumeration
	Defines a list of acceptable values.

Example:

<xsd:element name="car">

<xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="Audi"/>

 <xsd:enumeration value="Golf"/>

 <xsd:enumeration value="BMW"/>

 </xsd:restriction>

</xsd:simpleType>

</xsd:element>

	fractionDigits

totalDigits
	Specifies the maximum number of decimal places allowed. Must be equal to or greater than zero

Example:

<xsd:element name="number">

<xsd:simpleType>

 <xsd:restriction base="xsd:decimal">

 <xsd:fractionDigits value="2"/>

 <xsd:totalDigits value="8"/>

 </xsd:restriction>

</xsd:simpleType>

</xsd:element>

Note: The maximum number of decimal digits is 18.

	minInclusive maxInclusive
	Specifies the lower/upper bounds for numeric values (the value must be greater/less than or equal to this value).

Example:

<xsd:element name="percentage">

<xsd:simpleType>

 <xsd:restriction base="xsd:integer">

 <xsd:minInclusive value="0"/>

 <xsd:maxInclusive value="100"/>

 </xsd:restriction>

</xsd:simpleType>

</xsd:element>

	minExclusive maxExclusive
	Specifies the lower/upper bounds for numeric values (the value must be greater/less than this value)

Figure 2.2 Restrictions for simple datatypes

	Constraint
	Description

	Length
	Specifies the exact number of characters or list items allowed. Must be equal to or greater than zero.

Example:

<xsd:element name="password">

<xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:length value="8"/>

 </xsd:restriction>

</xsd:simpleType>

</xsd:element>

Exactly eight characters.

	minLength maxLength
	Specifies the minimum/maximum number of characters or list items allowed. Must be equal to or greater than zero.

Example:

<xsd:element name="password">

<xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:minLength value="5"/>

 <xsd:maxLength value="8"/>

 </xsd:restriction>

</xsd:simpleType>

</xsd:element>

From five to eight characters.

	whiteSpace
	Specifies how white space (line feeds, tabs, spaces, and carriage returns) are handled.

Example:

<xsd:element name="address">

<xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:whiteSpace value="constr_value"/>

 </xsd:restriction>

</xsd:simpleType>

</xsd:element>

Constr_value can be set to “preserve” (do not remove any white spaces), “replace” (replace all white spaces with spaces), and “collapse” (line feeds, tabs, spaces, carriage returns are replaced with spaces, leading and trailing spaces are removed, multiple spaces are reduced to a single space).

Figure 2.2 (continued) Restrictions for simple datatypes

	Constraint
	Description

	pattern
	Defines the exact sequence of characters that are acceptable.

Example 1:

<xsd:element name="choice">

<xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:pattern value="[xyz]"/>

 </xsd:restriction>

</xsd:simpleType>

</xsd:element>
Acceptible value is one of the following letters: x, y, or z.

Example 2:

<xsd:element name="initials">

<xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:pattern value="[a-zA-Z][a-zA-Z]"/>

 </xsd:restriction>

</xsd:simpleType>

</xsd:element>
Acceptible value is two uppercase or lowercase letters from a to z.

Example 3:

<xsd:element name="gender">

<xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:pattern value="male|female"/>

 </xsd:restriction>

</xsd:simpleType>

</xsd:element>
Acceptible value is two uppercase or lowercase letters from a to z.

Example 4:

<xsd:element name="password">

<xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:pattern value="[a-zA-Z0-9]{8}"/>

 </xsd:restriction>

</xsd:simpleType>

</xsd:element>

There must be exactly eight characters in a row and those characters must be lowercase or uppercase letters from a to z, or a number from 0 to 9.

Figure 2.2 (continued) Restrictions for simple datatypes

You can also add restrictions (facets) to a data type in order to limit its content, and you can require the data to match a defined pattern. Restrictions can be made on values, set and series of values, white space characters, and length. Available constrains are shown in Figure 2.2.

The pattern restriction is the most complex one. In the given figure you can see several examples of using patterns, while there are many more. For the complete list, consult documentation on XSD schemes provided in the W3C recommendations.

If you want to, you can assign default value or a fixed value to the simple elements. A default value is automatically assigned to the element if no other value is specified, while a fixed value is also automatically assigned to the element but you cannot specify another value. For instance:

<xsd:element name=”Color” type=”xsd:string”
 default=”blue”/>

<xsd:element name=”Color” type=”xsd:string”
 fixed=”blue”/>

Complex elements contain other elements and/or attributes. There are four kinds of complex elements:

· empty element (contains only attributes)

· element that contains only other elements (has no attributes of its own)

· element that contains only text (can contain own attributes, but has no child elements)

· element that contains both other elements and text (also called mixed content element; can contain all of the above)

A Figure 2.3 shows examples of these variations. Complex elements are very important for mapping relational database to XML documents, as you will see a bit later.

	Empty element

	Ex.
	<book bookid="1977" />

	XSD schema
	<xsd:element name="book">

 <xsd:complexType>

 <xsd:attribute name="bookid"
 type="xsd:positiveInteger"/>

 </xsd:complexType>

</xsd:element>

	Other elements only

	Example
	<artist>

 <firstname>Hans</firstname>

 <lastname>Baurle</lastname>

</artist>

	XSD schema
	<xsd:element name="artist">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="firstname"
 type="xsd:string"/>

 <xsd:element name="lastname"
 type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

	Text only

	Ex.
	<zipcode city="belgrade">11000</zipcode>

	XSD schema
	<xsd:element name="zipcode">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:integer">

 <xsd:attribute name="city"
 type="xsd:string" />

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

</xsd:element>

Figure 2.3 Examples of complex elements

	Mixed content

	Example
	<order>

 Dear Mr.<name>John Doe</name>.

 Your order <orderid>666</orderid> will be

 shipped on <shipdate>2001-07-13</shipdate>.

</order>

	XSD schema
	<xsd:element name="order">

 <xsd:complexType mixed="true">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="orderid"
 type="xsd:positiveInteger"/>

 <xsd:element name="shipdate" type="xsd:date"/>

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

Figure 2.3 (continued) Examples of complex elements

In the last example we introduced the sequence indicator. In general, indicators are used to control how these complex elements are to be used in the documents. There are three groups of indicators:

· Order indicators are used to define in which order the elements should occur. There are three of them:

· All – specifies that the child elements can appear in any order, and that each child element must occur once and only once.

· Choice – specifies that either one child element or another can occur
· Sequence – specifies that the child elements must appear in a specific order.
· Occurrence indicators are used to define how often an element can occur. There are two of them:
· maxOccurs – specifies the maximum number of times an element can occur (the default value is 1). To allow an element to appear an unlimited number of times, use the maxOccurs=”unbounded”.
· minOccurs – specifies the minimum number of times an element can occur.
· Group indicators are used to define related sets of elements. They can be defined on the element-level or attribute-level. After you have defined a group, you can reference it in another group or complex type definition.
This is the example of group indicator:

<xsd:group name="title">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="author" type="xsd:string"/>

 <xsd:element name="year" type="xsd:date"/>

 </xsd:sequence>

</xsd:group>

<xsd:element name="book" type="bookinfo">

<xsd:complexType name="bookinfo">

 <xsd:sequence>

 <xsd:group ref="title"/>

 <xsd:element name="price">

 <xsd:simpleType>

 <xsd:restriction base="xsd:decimal">

 <xsd:fractionDigits value="2"/>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>
 </xsd:sequence>

</xs:complexType>

Order and occurrence indicators are often used in annotated XSD schemas. Here is one such scheme:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:sql="urn:schemas-microsoft-com:mapping-schema" xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

 <xsd:element name="Artists" sql:relation="Artists">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="ArtistID"
 sql:field="ArtistID"
 msdata:ReadOnly="true"
 msdata:AutoIncrement="true"
 type="xsd:int" />

 <xsd:element name="First Name" sql:field="Name"
 type="xsd:string" />

 <xsd:element name="Last Name" sql:field="Name"
 type="xsd:string" />

 <xsd:element name="Email" sql:field="Email"
 type="xsd:string" />

 <xsd:element name="Phone" sql:field="Phone"
 type="xsd:string"
 minOccurs="0" />

</xsd:sequence>

 </xsd:complexType>

 <xsd:unique name="MyKey" msdata:PrimaryKey="true">

 <xsd:selector xpath=".//Artists" />

<xsd:field xpath="ArtistID" />

 </xsd:unique>

 </xsd:element>

</xsd:schema>
In the previous scheme, indicator minOccurs=”0” means that given field in the relational database can be empty (that is, with AllowNulls option checked during table design).

The sql:relation attribute describes with which table in the relational database this scheme should be used. The sql:field attribute maps the field from the table (chosen with sql:relation) to an XML element. Finally, you can see that we also defined the primary key to be used when querying the given table using XPath queries. That was accomplished by using the <xsd:unique> element and by setting the values of some special attributes (which are quite self-explanatory).

Next thing we should understand is the XPath language.

 2.3 XPath Language

XPath (XML Path Language) is a graph navigation language. XPath is used to select a set of nodes from an XML document. Each XPath operator selects a node-set based on a node-set selected by a previous XPath operator. For example, given a set of <Book> nodes, XPath can select all <Author> nodes with the date_of_birth attribute greater then 1/1/1950. The resulting node-set contains all the books which authors are born after 1/1/1950.

XPath language is defined by the W3C as a standard navigation language (its specification can be found at the W3C Web site at http://www.w3.org/TR/xpath). As we already said, only the subset of this specification is implemented in SQL Server 2000 and SQLXML add-on. You might want to recheck the supported functionality listed in the Figure 2.1 in the first section of this chapter.

The basic XPath syntax is similar to the filesystem addressing. If the path starts with a slash (/), then it represents an absolute path to the required element. For example, the command /A/D/B will select all elements B which are children of D which are children of the root element A (result is marked with the blue color). On the other hand, the command /A/C will select all the elements C which are children of the root element A (result is marked with the red color).

<A>

 <C/>

 <D>

 </D>
 <C/>

If the path starts with the double slash (//) then all elements in the document which meet given criteria are selected. For instance: //B will select all elements B from the file:

<A>

 <C/>

 <D>

 </D>
 <C/>

The star operator (*) selects all the elements located by the preceding path. For example /A/D/* will select all child elements of D which are children of the root element A:

<A>

 <C/>

 <D>

 <E/>

 <E/>
 </D>
 <C/>

If you want to combine several paths, you can use operator |. For example: //C | //B will select all elements C and B:

<A>

 <C/>

 <D>

 </D>
 <C/>

Expression in the square brackets can further specify an element. A number in the brackets gives the position of the element in the selected set. The function last() selects the last element in the selection. For example: /A/B[1] will select the first occurrence of the B element inside parent element A (marked in blue color). The path /A/B[last()] will select the last B in the parent element A (marked in red color).

<A>

 </D>

When making an XPath query, you can use the element attributes as the search criterion. You can check if some attribute exists, or you can check its value. In general, attributes are specified with the @ prefix. For instance: //B[@name='nikola'], will select all elements B which have attribute name with value “nikola”. Here we could use function normalize-space(@name) to remove any leading and trailing spaces before comparison, but unfortunately, that function is not supported by SQL Server 2000, just like very useful functions like contains(), substring(), etc. (Again, see Figure 2.1 for list of supported functionality.)

<A>
 <B id=”66”/>
 <B name=”nikola”/>

 <B name=”darko”/>

 <D/>

Expression in the brackets can be further broaden using relational operators (=, !=, <, >, >=, …), AND and OR operators, arithmetic operators, etc. You will see how a bit later, in the section on making XPath queries against relational database.

2.4 Making Queries

As we mentioned before, you can easily make queries against relational database using ADO.NET. Depending on weather you choose SQL queries or XPath queries you will have to use one group of ADO.NET classes. The unifying factor for all these classes is the DataSet class. The DataSet is a memory-resident representation of data that provides a consistent relational programming model independent of the data source. It represents a complete set of data including tables, constraints, and relationships among the tables. Because the DataSet is independent of the data source, it can include data local to the application, as well as data from multiple data sources. Interaction with existing data sources is controlled through the DataAdapter.

Each data provider included with the .NET Framework has it own DataAdapter object. We will use SqlDataAdapter object for making SQL queries, and SqlXmlAdapater for making XPath queries.

A DataAdapter is used to retrieve data from a data source and populate tables within a DataSet, and to resolve changes made to the DataSet back to the data source. The DataAdapter uses the Connection object of the .NET data provider to connect to a data source, and Command objects to retrieve data from and resolve changes to the data source.

The Fill method of the DataAdapter is used to populate a DataSet with the results of appropriate select command. It takes as its arguments a DataSet to be populated, and a DataTable object, or the name of the DataTable to be filled.

In our examples we will use table “Users”, shown in the Figure 2.4.

	Field name
	Data type
	Length
	Description

	UserID
	int
	4
	Primary key; auto-field

	Username
	nchar
	20
	

	Password
	nchar
	128
	Hash value

	FirstName
	nchar
	30
	

	LastName
	nchar
	30
	

	Email
	nchar
	50
	

Figure 2.4 Design sheet for Table Users

SQL Queries

Let's begin with a simple example:

…

String dbs = (String) ((NameValueCollection)
 Context.GetConfig("system.web/dbstore"))
 ["dbconnection"];

SqlConnection myConn = new SqlConnection(dbs);

SqlCommand cmd = new SqlCommand("SELECT UserID, Email
 FROM Users WHERE FirstName=’Nikola’", myConn);

cmd.CommandTimeout = 30;

SqlDataAdapter da = new SqlDataAdapter();

da.SelectCommand = cmd;

myConn.Open();

DataSet ds = new DataSet();

da.Fill(ds, "Customers");

…

myConn.Close();

…

For storing the dbconnection string we have used the customized store mentioned in Chapter 1. It is a good idea to keep such data in that manner because, if needed, you can easily change connection parameters (username/password used for database access, for instance), even without recompiling the application. To review: our dbconnection string stores following values:

Provider=SQLOLEDB;
user id=usr;
password=pswd;
server=(local);
database=MyDatabase;
Trusted_Connection=no
Of course, you have to adjust previous values to your needs. For instance, if SQL Server and Web Server are run on different machines, you should assign correct server name to the server entry – otherwise use (local) designator. Adjust all other values, accordingly.

The connection string contains several more parameters – when omitted, for some of them the default values are used while others are ignored. One of such additional parameters you might want to use is Connection Timeout. It denotes the length of time (in seconds) to wait for a connection to the server before terminating the attempt and generating an error (default value is 15 seconds). For complete list of parameters, consult the documentation.

The connection string is used to initialize SqlConnection object, which represents an open connection to SQL Server database – more precisely, a unique session to SQL Server data source. Note that if the SqlConnection goes out of scope, it is not closed, so you must explicitly close the connection by calling Close or Dispose methods. In case some error occurs (e.g. Connection Timeout), SqlException is thrown.

Next interesting object is SqlCommand. It has several overloaded constructors – which one you choose depends on how you plan to use the connection object. In our example SqlCommand object (instructed to use myConn connection) is afterwards assigned to SqlDataAdapter object. By calling the adaptor’s Fill method (providing the DataSet object to be populated), as a result we got a DataSet object (ds) containing the required data – in our case the list of UserIDs and appropriate Emails for all users whose first name is “Nikola”. You can notice that we never had directly executed Sql command – DataAdapter object does that for us – we just need to make sure that required connection is in opened state before calling Fill method.

To modify, insert, or delete data, you can use standard SQL statements. In that case the SqlDataAdapter is not used at all; just SqlCommand object and its ExecuteNonQuery method, as follows:

…

String myQuery = “DELETE FROM Customers WHERE
 FirstName=’Nikola’”;

SqlCommand cmd = new SqlCommand(myQuery,myConn);

cmd.Connection.Open();

cmd.ExecuteNonQuery();

cmd.Close();

…

Of course, myQuery can be any regular SQL transaction statement.

Instead of directly using SQL transactions, we can let the DataSet do the job for us, as shown in the next section.

Using DataSets

The usage of DataSet facilitates the insertion, modification and deletion of data. For example:

if (ds.Tables.Count != 0)

{

 foreach (DataRow r in ds.Tables["Customers"].Rows)

 {

 Console.WriteLine(r[“Email”]);
 }

}

Note that we had to first check if table Customers exists. If the query returns zero hits, the logical thing (at least to me) would be to create an empty table in the DataSet. However, the Fill method, in that case, does not create a table at all, so any attempt to access it (including foreach function) would produce an error.

If you need to access table columns instead of rows, it can be done using the Columns property of the Tables collection and DataColumn data type. For instance:

…

foraech (DataColumn c in ds.Tables[“Customers”].Columns)

…

If you want to add a new row to the table, it is done as follows (the new row will have its RowState set to Added):

DataRow nr = ds.Tables["Customers"].NewRow();

nr[“UserID”] = uid;

nr[“Email”] = “john@somewhere.org”;

ds.Tables["Customers"].Rows.Add(nr);

To delete the row from the table, call the Delete method of the Rows collection. For instance, this will delete the second row of the table:

DataRow r = ds.Tables["Customers"].Rows[2];

r.Delete();

The Delete method will not actually delete a row – it will just set its RowState to Deleted (unless the row has been added using Add method; in that case the row will be removed). If you change your mind, you can later undelete it using r.RejectChanges().

The RejectChanges method is in general used to cancel all modifications. If the RowState is Deleted or Modified the row will be reverted to the previous values, and its state will be set to Unchanged. The row in the Added state will be removed.

When you are satisfied with the changes, you can make them permanent with AcceptChanges method of the appropriate Table object:
ds.Tables[“Customers”].AcceptChanges();

Note that this will make changes permanent to the DataSet only. To modify the data in the database you will have to call the Update method of the originating DataSet:

da.Update(ds, “Customers”);

The DataAdapter will make appropriate INSERT, MODIFY and DELETE calls to reflect the changes back to the server. To gain more control over the process you can provide your own commands for that purpose, using InsertCommand, UpdateCommand, and DeleteCommand properties of the DataAdapter. These fields hold command objects that manage updates to the data in the data source according to modifications made to the data in the DataSet.

When making modifications, be careful not to violate any referential integrity defined in the database (appropriate exception will be thrown).

You can also make your own DataSet, define tables it holds, their structure, relations between them, primary keys, etc. One of the reasons why you would want to do such a thing is to create tables holding data to be bound to various WebControls (for instance DataList). It is especially useful when you have to make a compilation of data acquired form different tables or sources. If you use SQL queries you can make one complex query that will return all needed data into single table, but as you will see later, things are a bit more complicated when using XPath queries. For now just imagine that you somehow got all the necessary information and that you need to bind it to some control…

For example let’s create a dynamic DataList, part of which is shown on the picture below:

[image: image1.jpg]works by selected atist:

Himmelwarts
Hans Baurle

150 % 110 cm, 1998
Price: 3500 EUR

Genmanipuliert
Hans Baurle

100 % 65 cm, 1998
Price: 3000 EUR

Delete

Schedule analysis

Cancel analysis

Schedule analysis

Cancel analysis

In the .cs codebehind first we will create table used for data binding:

protected System.Web.UI.WebControls.DataList MyDataList;

…

DataSet dsForBinding = new DataSet();

dsToBind.Tables.Add("TableToBind");

dsToBind.Tables["TableToBind"].Columns.Add("ArtWorkID");

dsToBind.Tables["TableToBind"].Columns.Add("Path");

dsToBind.Tables["TableToBind"].Columns.Add("Title");

dsToBind.Tables["TableToBind"].Columns.Add("Name");

dsToBind.Tables["TableToBind"].Columns.Add("Size");

dsToBind.Tables["TableToBind"].Columns.Add("Year");

dsToBind.Tables["TableToBind"].Columns.Add("Price");
for (…) {

// for each artwork create a table row

 DataRow r = dsToBind.Tables["TableToBind"].NewRow();

 r[“ArtWorkID”] = …

 r[“Name”] = …

 …

 dsToBind.Tables["TableToBind"].Rows.Add(rb);

}

MyDataList.DataSource = dsToBind;

MyDataList.DataBind();

Afterwards, in the .aspx file we can use DataList as follows:

.aspx code:

…
<asp:DataList id="MyDataList" OnItemCommand="ResolveGridCommand" style="Z-INDEX: 100; LEFT: 350px; POSITION: absolute; TOP: 5px" runat="server">

 <SelectedItemStyle Font-Bold="True" ForeColor="White" BackColor="#CE5D5A"></SelectedItemStyle>

 <HeaderTemplate>

 <P>Artworks by selected artist:</P>

 </HeaderTemplate>

 <AlternatingItemStyle BackColor="White"></AlternatingItemStyle>

 <FooterTemplate>

 No more entries.

 </FooterTemplate>

 <ItemStyle BackColor="#F7F7DE"></ItemStyle>

 <ItemTemplate>

 <TABLE id="MyTable" style="FONT-WEIGHT: normal; FONT-SIZE: 10pt; FONT-STYLE: normal; FONT-FAMILY: verdana; BORDER-COLLAPSE: collapse; FONT-VARIANT: normal" borderColor="#111111" cellSpacing="0" cellPadding="10" width="400">

 <TR bgColor="#cccccc">

 <TD vAlign="center" align="middle" width="140">

 <IMG style="BORDER-RIGHT: #000000 1px solid; BORDER-TOP: #000000 1px solid; BORDER-LEFT: #000000 1px solid; BORDER-BOTTOM: #000000 1px solid" src='<%# DataBinder.Eval(Container.DataItem, "path" , "../images/artworks/{0}-thumb.jpg") %>' align=top>

</TD>

 <TD vAlign="top" width="421"><%# DataBinder.Eval(Container.DataItem, "Title") %>

 <%# DataBinder.Eval(Container.DataItem, "Name") %>

 <%# DataBinder.Eval(Container.DataItem, "size") %>

 cm,

 <%# DataBinder.Eval(Container.DataItem, "Year") %>

 Price:

 <%# DataBinder.Eval(Container.DataItem, "Price") %>

</TD>

<TD align="right" width="100">

 <P>

 <asp:Button id=BtnDelete runat="server" Font-Names="Verdana" Font-Size="XX-Small" Width="130px" BorderStyle="Groove" Text="Delete" CommandArgument='<%# DataBinder.Eval(Container.DataItem, "ArtWorkID") %>' CommandName="Delete" CausesValidation="False">

 </asp:Button>

 </P>

 <P>

 <asp:Button id=BtnAnalyse runat="server" Font-Names="Verdana" Font-Size="XX-Small" Width="130px" BorderStyle="Groove" Text="Schedule analysis" CommandArgument='<%# DataBinder.Eval(Container.DataItem, "ArtWorkID") %>' CommandName="Schedule" CausesValidation="False">

 </asp:Button>

 </P>

 <P>

 <asp:Button id=BtnCancel runat="server" Font-Names="Verdana" Font-Size="XX-Small" Width="130px" BorderStyle="Groove" Text="Cancel analysis" CommandArgument='<%# DataBinder.Eval(Container.DataItem, "ArtWorkID") %>' CommandName="Cancel" CausesValidation="False">

 </asp:Button>

 </P>

</TD>

 </TR>

 <TR height="10" width="582">

 </TR>

 </TABLE>

 </ItemTemplate>

 <FooterStyle BackColor="#CCCC99"></FooterStyle>

 <HeaderStyle Font-Bold="True" ForeColor="White" BackColor="#6B696B"></HeaderStyle>

</asp:DataList>

Finally, back in the .cs codebeind, we have to provide function to handle user request from the .aspx page (as specified by the OnItemCommand attribute):

public void ResolveGridCommand(Object sender,
 DataListCommandEventArgs e)

{

 if (((Button)e.CommandSource).CommandName == "Delete")

 {

 // process the command

 }

 else if (…)

 …

}

You will encounter a lot of these search-the-database-and-bind-the-data-to-visual-control tasks when creating e-commerce sites. Using ADO.NET and WebControls, it will be a breeze.

XPath Queries

Second approach for obtaining data from remote data source is to use XPath queries. Basics of the XPath language were discussed earlier in the section 2.3. Here we will concentrate on how you can use additional classes provided by the SQLXML 3.0 add-on.

In order to use add-on classes, Microsoft.Data.SqlXml assembly has to be included in project. Afterwards, when needed, you can import appropriate package into your source code (through using Microsoft.Data.SqlXml statement).

To use XPath queries, as previously mentioned, you have to make an annotated XSD scheme that provides mapping of sql fields onto xml file. To continue our example, annotated XSD scheme for table shown in Figure 2.4 is given below.

Users.xsd:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:sql="urn:schemas-microsoft-com:mapping-schema" xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

<xsd:element name="Users" sql:relation="Users">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="UserID" sql:field="UserID"
 type="xsd:int" />

<xsd:element name="Username" sql:field="Username"
 type="xsd:string" />

 <xsd:element name="Password" sql:field="Password"
 type="xsd:string" />

<xsd:element name="FName" sql:field="FirstName"
 type="xsd:string" />

<xsd:element name="LName" sql:field="LastName"

 type="xsd:string" />

<xsd:element name="Email" sql:field="Email"
 type="xsd:string" minOccurs="0"/>

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

</xsd:schema>

Note again, that the way you name your fields in the annotated XSD scheme is arbitrary – only thing that matters is to correctly cite the names of the SQL table and fields in it.

Here, you can notice one more, at first look, strange thing: although UserID field is autoincrement field (in the Users table), and although we have the appropriate syntax to describe that in the annotated XSD scheme (using msdata:AutoIncrement="true" attribute), it is not done. Obvious question is why? Well, if you just read out the data from the database, everything is the same, no matter whether you marked the field as autoincrement or not. Problems occur when you try to write data back to database. Due to an apparent bug, if you try to insert new record (using updategram which is described in separate section shortly after), and if the field UserID is set as autoincrement (both in SQL table and annotated XSD scheme) you wont be able to make the insertion, because an exception will be thrown. If you omit the UserID value, hopping that SQL Server or SQLXML class would figure out that it is auto-field and update it as necessary, the exception will be thrown. If you omit that field altogether from the scheme, same thing happens. No matter how you try, it won’t budge. (It still works perfectly if you use SQL's INSERT command, or let the SqlAdapter do the job – but it is not what we want – we want to use XML notation.) Only solution is to make UserID a regular integer field (both in SQL Server and annotated XSD scheme), and manually simulate autoincrement behaviour. Hopefully it will be fixed in later editions of SQLXML library. (It is not the only unfinished feature in that add-on – you already saw that it does not support XPath language in full.)

Once we created annotated scheme, we can make the query. As a simple example, we will use XPath to check the logon credentials against our database (the table Users to be specific). It is done as follows:

private bool AuthenticateUser(String user, String pass)
{

 bool authenticated = false;

 String dbs = (String) ((NameValueCollection)
 Context.GetConfig("system.web/dbstore"))
 ["dbconnection"];

 String spth = (String) ((NameValueCollection)
 Context.GetConfig("system.web/dsnstore"))
 ["schemes_path"];

 SqlXmlAdapter ad;

 SqlXmlCommand cmd = new SqlXmlCommand(dbs);

 cmd.RootTag = "ROOT";

 cmd.CommandType = SqlXmlCommandType.XPath;

 cmd.SchemaPath = spth + "Users.xsd";

 cmd.CommandText = "Users[Username='" + user

 + "' and Password='" +

 FormsAuthentication.HashPasswordForStoring
 InConfigFile(pass,"sha1") + "']";

 DataSet ds = new DataSet();

 ad = new SqlXmlAdapter(cmd);

 ad.Fill(ds);

 if (ds.Tables.Count != 0)

 {

 DataRow dr = ds.Tables["Users"].Rows[0];

 authenticated = true;

 }

 else

 {

 authenticated = false;

 }

 return authenticated;

}

First thing you have probably noticed is that there is no connection object. When working with SQL queries, we used SqlConnection object, but here there is nothing like. Instead, all we have to do is to forward connection string to SqlXmlCommand object in its constructor – the connection is afterwards completely handled by the command object (including opening and closing the connection).

The adapter object is here, naturally, called SqlXmlAdapter. It provides only two methods: Fill and Update, but for most tasks, it is all you really need.

SqlXmlCommand object is the one that makes all the difference. It can be used to execute SQL commands, XPath commands, UpdateGrams and DiffGrams. Some of the important properties of the SqlXmlCommand object are following:

· CommandText – Stores the text of a command you want to execute.

· CommandType – Identifies the type of a command you want to execute. Some of often used options are:

· SqlXmlCommandType.Sql – if you want to execute an SQL command, for example:
SELECT * FROM users FOR XML AUTO

· SqlXmlCommandType.XPath – if you want to execute XPath commands, for example:
Users[FName=’Nikola’]

· SqlXmlCommandType.UpdateGram – if you want to execute UpdateGram.
· SqlXmlCommandType.DiffGram – if you want to execute DiffGram.
· OutputEncoding – Specifies the encoding for the stream that is returned when the command executes. Some commonly used encodings are UTF-8, ANSI, and Unicode. UTF-8 is the default encoding.
· SchemaPath – Is the name of the mapping schema along with the directory path. It is used for specifying a mapping schema for XPath queries. The specified path can be absolute or relative. If the path is relative, the base path that is specified in Base Path property is used to resolve the relative path. If no base path is specified, the relative path is relative to the current directory.
· RootTag – Provides the single root element for XML generated by command execution. A valid XML document requires a single root-level tag; therefore if the executed command generates an XML fragment without a single top-level element, with this property you can specify a root element for the returning XML.
As usually, it is not necessary to execute the command directly – it is done implicitly by calling the Fill method (of the appropriate adapter object). However, when executing UpdateGrams or DiffGrams, you have to use the ExecuteStream method of the SqlXmlCommand object.

In our example we executed XPath query (thus writing cmd.CommandType = SqlXmlCommandType.XPath), provided arti-ficial root element (ROOT), and required that the XPath should be run against Users.xsd scheme (we provided its full path, too).

After we have called the Fill method, we are back on the familiar pitch. You can modify the DataSet object as you like (and as described in the previous section), and update the data in the data source with ease.

However, sometimes the Update method does not operate as expected – another weird glitch, unfortunately. If it works fine, leave it as is. If not, think about using UpdateGram.

UpdateGrams

Another way to modify (insert, update or delete) data in the database is to use UpdateGrams. An updategram works against the XML views that are provided by the annotated XSD schema. The mapping schema, in turn, has the necessary information to map XML elements and attributes to the corresponding database tables and columns. The updategram uses this mapping information to update the database tables and columns.

The keywords in an updategram, such as <sync>, <before>, and <after>, exist in the urn:schemas-microsoft-com:xml-updategram name-space. The namespace prefix that you use is arbitrary. In our examples, we will use the updg prefix to denote the updategram namespace. The general format of an updategram is following:

<ROOT xmlns:sql='urn:schemas-microsoft-com:xml-sql' xmlns:updg='urn:schemas-microsoft-com:xml-updategram'>
 <updg:sync [mapping-schema="AnnotatedSchema.xsd"]>

 <updg:before>

 ...

 </updg:before>

 <updg:after>

 ...

 </updg:after>

 </updg:sync>

</ROOT>

The meaning of the keywords is as follows:

· <before> block identifies the existing state of the record.

· <after> block identifies the new state to which data is to be changed.

· <sync> block contains the <before> and <after> blocks, and it can contain more than one set of <before> and <after> blocks. If there is more than one set of <before> and <after> blocks, they must be specified as pairs. An updategram can have more than one <sync> block, and each <sync> block represents one transaction (which means that either everything in the <sync> block is done or nothing is done). If you specify multiple <sync> blocks in an updategram, the failure of one <sync> block does not affect the other <sync> blocks.

Whether an updategram deletes, inserts, or updates a record instance depends on the contents of the <before> and <after> blocks:

· If a record instance appears only in the <before> block with no corresponding instance in the <after> block, the updategram performs a delete operation.

· If a record instance appears only in the <after> block with no corresponding instance in the <before> block, it is an insert operation.

· If a record instance appears in the <before> block and has a corresponding instance in the <after> block, it is an update operation. In this case, the updategram updates the record instance to the values that are specified in the <after> block.

In an updategram, the mapping scheme can be specified implicitly or explicity (that is, an updategram can work with or without a specified scheme). If you do not specify a mapping schema, the updategram assumes an implicit mapping (the default mapping), where each element in the <before> block or <after> block maps to a table and each element's subelement or attribute maps to a column in the database. If you explicitly specify a mapping schema, the elements and attributes in the updategram must match the elements and attributes in the mapping schema.
Since an example is usually worth thousand words, let’s see how it really works. (Of course, it goes without saying that we previously obtained all the necessary information.)

Example 1: Delete user from table Users.

…

String dsn = (String) ((NameValueCollection)
 Context.GetConfig("system.web/dsnstore"))
 ["artshopdb"];

Stream stm;

SqlXmlCommand cmd = new SqlXmlCommand(dsn);

cmd.CommandType = SqlXmlCommandType.UpdateGram;

string updategram_delete =

"<ROOT xmlns:sql='urn:schemas-microsoft-com:xml-sql' xmlns:updg='urn:schemas-microsoft-com:xml-updategram'>
<updg:sync [mapping-schema="Users.xsd"]>" +
"<updg:sync>" +

"<updg:before>" +

"<Users>" +

 "<UserID>" + uid.ToString() + "</UserID>" +

“</Users>” +

"</updg:before>" +

"<updg:after/>" +

"</updg:sync>" +

"</ROOT>";

cmd.CommandText = updategram_delete;

stm = cmd.ExecuteStream();

Example 2: Insert new user to table Users.

…

String dsn = (String) ((NameValueCollection)
 Context.GetConfig("system.web/dsnstore"))
 ["artshopdb"];

Stream stm;

SqlXmlCommand cmd = new SqlXmlCommand(dsn);

cmd.CommandType = SqlXmlCommandType.UpdateGram;

string updategram_insert =

"<ROOT xmlns:sql='urn:schemas-microsoft-com:xml-sql' xmlns:updg='urn:schemas-microsoft-com:xml-updategram'>
<updg:sync [mapping-schema="Users.xsd"]>" +
"<updg:sync>" +

"<updg:before/>" +

"<updg:after>" +

"<Users>" +

 "<UserID>" + uid.ToString() + "</UserID>" +

 "<Username>" + sUsername + "</Username>" +

 "<Password>" +
 FormsAuthentication.HashPasswordForStoring
 InConfigFile(Password.Value,"sha1") +

 "</Password>" +

 "<FName>" + sFirstName + “</FName>" +

 "<FName>" + sLastName + “</FName>" +

 "<Email>" + sEMail.Text + "</Email>" +

"</Users>" +

"</updg:after>" +

"</updg:sync>" +

"</ROOT>";

cmd.CommandText = updategram_insert;

stm = cmd.ExecuteStream();

Example 3: Change the user’s password.

…

String dsn = (String) ((NameValueCollection)
 Context.GetConfig("system.web/dsnstore"))
 ["artshopdb"];

Stream stm;

SqlXmlCommand cmd = new SqlXmlCommand(dsn);

cmd.CommandType = SqlXmlCommandType.UpdateGram;

string updategram_insert =

"<ROOT xmlns:sql='urn:schemas-microsoft-com:xml-sql' xmlns:updg='urn:schemas-microsoft-com:xml-updategram'>
<updg:sync [mapping-schema="Users.xsd"]>" +
"<updg:sync>" +

"<updg:before>" +

 "<UserID>" + uid.ToString() + "</UserID>" +

"</updg:before>" +

"<updg:after>" +

"<Users>" +

 "<Password>" +
 FormsAuthentication.HashPasswordForStoring
 InConfigFile(Password.Value,"sha1") +

 "</Password>" +

"</Users>" +

"</updg:after>" +

"</updg:sync>" +

"</ROOT>";

cmd.CommandText = updategram_insert;

stm = cmd.ExecuteStream();

Handling Errors

When encountering an error, SqlXmlCommand object throws SqlXmlException. You can catch it like any other exception. For instance:

try

{

 …

}

catch (SqlXmlException e)

{

 e.ErrorStream.Position = 0;

 strErr = new StreamReader(e.ErrorStream).ReadToEnd();

 System.Console.WriteLine(strErr);

}

XPath Queries vs. SQL Queries

SQL commands are, without any doubt, much more powerful when it comes to accessing data from relational databases. XPath language, being the graph navigation language, lacks a lot of features SQL commands can provide. First of all, it lacks the IN operator, joins and cross joins, the LIKE operator, and many, many more. The creators of XPath language have, in the mean time, designed XQuery which is supposed to address some of mentioned flaws (not only for database access’s sake, but mainly for easier navigation through XML documents). More on XQuery you can read in the Chapter 5, dedicated to Semantic Web.

SQLXML is certainly an interesting tool. In version 3.0 it has come a long way since its early starts, and it is likely it will be developed even further, along with the .NET Framework. However, the very idea of using XPath/UpdateGrams to maintain large databases is, in my opinion, a big step back. In the early days of computing, databases were sequential text files and they evolved during the years to reach relational model, which is fast, reliable and provides excellent tools for database design, optimization and data manipulation. On the other hand, with using XML files instead of relational data model – and after all, when using XPath, that is what we essentially do – we are not very far from the first sequential model. If nothing else, the proven poor performance of XPath queries against data sources (including necessity to simulate even slightly complex queries), is more than enough reason against.

XML is, undoubtedly, very useful – but as all other things, only when used properly and in its place. Among other things, it is excellent tool for inter-process (and inter-platform) data exchange. Also, for small databases (couple of hundreds records), you certainly do not have to pull the heavy artillery and use SQL Server, MySQL, Oracle or some other relational database server – you simply won’t see any big difference in performance. A small XML file with will do job. It could even be a good idea to sometimes use XML to format data returned by database server as a response to SQL command (for instance using FOR XML statement). But when it comes to serious database management, XPath/UpdateGrams have nothing to look for.

Graphics Presentation

In the greatest number of existing solutions for art galleries on the web there are several serious problems that are not solved.

Problem 1 is the question: What is more important: download time or the quality of the pictures. One usual solution is to find a simple compromise between the quality and the size, but with this solution we can never have arbitrarily good quality of the picture. With the solution presented in this, this is possible.

Problem 2: In the greatest number of existing galleries the user can’t get a “feel” about the real dimensions of the presented artworks. Although every picture usually has specified dimensions, the user never can get a feel how much is one picture greater or smaller in relation to another, what are the real dimensions of the pictures…

Problem 3: Sculptures can’t be presented as a 3d model, so the user can see just 2d pictures of a sculpture.

Problem 4 is that the most of the web designers concentrate on the “as nice as possible” site, but there is nothing essential new.

Problem 1 can be solved with dynamical download of currently visible parts of the picture. Problems 2, 3 and 4 can be solved with 3d galleries that will have look of “real” rooms like in a museum with “real” paintings on the walls and “real” 3D sculptures.
3.1 3D Virtual Galleries

For a 3d environment there are several technologies that can be used:

· OpenGL

· MPEG

· Java

· VRML

OpenGL is a technology that has several advantages, but its most important disadvantage is that is very difficult to implement it on Internet.

MPEG technology is also capable for creating 3d scenes, but MPEG files are very large for download, especially over dial-up connections and it is very difficult to implement “deciding” and different behavior based on the actions of the user.

Java is interesting because it is designed for web and doesn’t require anything but the Java Virtual Machine on the client side.

VRML is however better than Java for these types of applications because it is created for designing virtual 3D worlds and already has implemented simple creating of 3D objects, moving through the worlds, reacting on users’ actions and dynamical behavior through programming, specially because VMRL can be manipulated by Java code, if there is some need for that. The only resource that VRML requires is a VRML player that is installed as a plug-in on user’s machine.

There are several different VRML players that can be used for viewing VRML files. However some of them do not support special features as EIA interface for communication between the web-browser and VMRL world. As this communication is very important in these types of applications, it is good to use "Cortona VRML player". This VMRL player has support for mentioned interface and can be installed automatically first time when the user wants to see a VRML scene. This will be explained a bit later.

3.2 VRML

Introduction
VRML is an acronym for Virtual Reality Modeling Language. It is a markup language that is used for modeling and showing 3d objects and worlds, especially for Internet.

As defined in the official specification (http://www.vrml.org/ Specifications/VRML97/part1/introduction.html):
"VRML is capable of representing static and animated dynamic 3D and multimedia objects with hyperlinks to other media such as text, sounds, movies, and images. VRML browsers, as well as authoring tools for the creation of VRML files, are widely available for many different platforms.

VRML supports an extensibility model that allows new dynamic 3D objects to be defined allowing application communities to develop interoperable extensions to the base standard. There are mappings between VRML objects and commonly used 3D application programmer interface (API) features."
If you want to see a VRML file in your browser, you should have a VRML Player plug-in installed. Some of them are Cosmo Player, Cortona VRML Player (free for download at www.parallelgraphics.com), etc.
Each VRML file at its start contains information that it is a VRML file and its encoding type. It usually reads like:

#VRML v2.0 utf8

The “#VRML” tag defines that the file is a VRML file, “v2.0” defines the version of the VRML and “utf8” defines the coding type. There should be exactly one space between “#VRML” and “v2.0” and also between “v2.0” and “utf8”. After “utf8” there should be space (code 0x20), tabulator (code 0x09), linefeed (code 0x0a) or carriage-return (code 0x0d). If there is a space or tabulator, all chars that are after this character will be considerate as a comment.

Description of the VRML world follows after the first row. That part of the file contains description for 3D objects (their shape, textures, position, and behavior for user’s actions), pictures, text, audio files, MPEG clips, definitions of the responses for user actions etc. Each description is called node. In other words, node contains information about singular data in the world. Example of a scene containing just one node that describes a purple sphere that has radius of 2.3 meters is given below, in the file first.wrl. The extension .wrl is used for VRML files. Please note that VRML is case sensitive and the case has to match completely.
first.wrl:
#VRML V2.0 utf8

 Shape {

 geometry Sphere {radius 2.3}

 appearance Appearance {

 material Material { diffuseColor 0.9 0 0.9 }

 }

 }

You can create this file in your favorite text editor. The first row is already explained above. The second row is the beginning of a shape definition. Shape is a node that defines a geometrical shape. In VRML there are several predefined 3D objects: box, cone, sphere and cylinder. Other objects can be defined as a set of points and surfaces.

Color of the node is described with 3 RGB components that have the value between 0 and 1. In this case we have a sphere with color that is combination of red and blue components, which produces purple color.

More complex VRML scenes are just combination of larger number of nodes. For example, in Appendix A, you can see a VRML description of the human head (obtained using special 3D scanner).
Creating Galleries

At this point, we will assume that the reader has some basic knowledge about VRML, so he/she can easily understand next rows.

A virtual gallery is a room that contains different artworks. At first, we will make a room, and after that we will fill it with artworks.

For walls, ceiling and floor of the room, we will use box nodes. One wall will be created in a file named wall.wrl and after that this wall will be included wherever we need it. In that way it will be very easy to change the skin of the gallery. The only thing what we should do is to change the shape of the wall.

wall.wrl:
#VRML V2.0 utf8

Collision{}

Shape {

 appearance Appearance {

 texture ImageTexture { url "walltexture.jpg" }

 textureTransform TextureTransform {

 scale 10 10

 }

 }

 geometry Box {

 size 10 3 0.05

 }

}

With the Collision node, in the second row, we defined that the user cannot “pass through” the other objects so he/she can’t leave the gallery. Definition of the wall starts in the third row: a thin box will do the job (creating an illusion of a wall).
The texture of the file is specified using the texture statement. To avoid stretching of the texture all over the wall, you can use textureTransform, like shown in our example. In this way we have 10*10=100 wafers of walltexture.jpg on the wall. The last thing is to specify the dimensions of the wall using the size statement.
In this way, we have created a wall that later will be repeated as needed, while its location within the world will be changed using the transform node. Now, let's make a sort of the simplest possible gallery, by instancing the created wall:

room.wrl:
#VRML V2.0 utf8

DEF Entry Viewpoint { position 0 0 0 orientation 0.0 1.0 0.0 0.0 description "Entry View"}

#

front wall

#

Transform {

translation 0 0 -5

rotation 0 1 0 0

scale 1 1 1

children [

 Inline { url "wall.wrl" }

]

}

#

back wall

#

Transform {

translation 0 0 5

rotation 0 1 0 0

scale 1 1 1

children [

 Inline { url "wall.wrl" }

]

}

#

left wall

#

Transform {

translation -5 0 0

rotation 0 1 0 1.57

scale 1 1 1

children [

 Inline { url "wall.wrl" }

]

}

Transform {

translation 5 0 0

rotation 0 1 0 -1.57

scale 1 1 1

children [

 Inline { url "wall.wrl" }

]

}

#

right wall

#

Transform {

 translation 0 1.5 0

 children [

 Shape {

 appearance Appearance {

 texture ImageTexture { url "ceiling.jpg" }

 textureTransform TextureTransform {

 scale 20 20

 }

 }

 geometry Box {

 size 20 0.05 20

 }

 }

]

}

#

floor

#

Transform {

 translation 0 -1.5 0

 children [

 Shape {

 appearance Appearance {

 texture ImageTexture { url "floor.jpg" }

 textureTransform TextureTransform {

 scale 20 20

 }

 }

 geometry Box {

 size 20 0.05 20

 }

 }

]

}

First, we created an entry viewpoint – the coordinates from which the user will start his navigation. After that there are four walls for four sides of the gallery. Finally there are the floor and the ceiling of the room. The positions of all walls are set through Transform node. This node makes a new coordinate system in the world. The center of each node declared in the children statement of the Transform node is placed to coordinates defined with translation statement and rotated as specified by rotation statement. First three numbers in the rotation are axes. E.g. if we want to rotate an object around x-axis, we will set the first number as 1 and the others as 0. The fourth parameter is an angle of the rotation around the specified axis. It is specified in radians. In this case, the center of the left wall will be placed on the coordinates (-5,0,0) and will be rotated for 1.57 radians or 90 degrees around the y-axis.

It is a good practice to write comments for each node in the gallery (all the text specified after character a ‘#’ is treated as a comment) so later we can easily know which node is which part of the gallery. Now we have very simple room that will be “filled” with artworks.

Depending on the technique of the artwork, presentation of the artwork is different. For sculptures, a VRML file for each piece is a logical solution. For pictures, it will be a JPEG file set as a texture on a thin box. The same principle will be used for movies. In other words, “2D techniques” will be presented as textures on thin boxes and “3D techniques” will be presented as included VRML files. Here you can see an example of a gallery that contains a picture, a video and a sculpture:

gallery.wrl:

#VRML V2.0 utf8

Inline { url "room.wrl" }

#

picture

#

Transform {

 translation 2 0 -4.97

 rotation 0 1 0 0

 scale 1 1 1

 children [

 Shape {

 appearance Appearance {

 texture ImageTexture { url "painting1.jpg" }

 textureTransform TextureTransform {

 scale 1 1

 }

 }

 geometry Box {

 size 0.64 0.5 0.05

 }

 }

]

}

#

video

#

Transform {

 translation -2 0 -4.97

 rotation 0 1 0 0

 scale 1 1 1

 children [

 Shape {

 appearance Appearance {

 texture MovieTexture {

 url "video1.mpg"

 speed 1

 loop TRUE

 }

 textureTransform TextureTransform {

 scale 1 1

 }

 }

 geometry Box {

 size 0.6 0.5 0.05

 }

 }

]

}

#

sculpture

#

Transform {

 translation 2 0 -4

 rotation 0 1 0 0

 scale 1 1 1

 children [

 Inline { url "sculpture1.wrl" }

]

}

Note that the room is included at the start of the file. In this way, we can create different exhibitions in the same gallery by including different artworks and vice versa – we can present the same exhibition in a different gallery just by included the different room.

Now let's take a quick look on the part of the code that describes the painting. The painting that we want to show in the gallery is placed in picture1.jpg file. This file is set as a texture for a box. Width and height of the box are the same as width and height of the painting. In this case we know (the artist told it to us, or we measured the artwork) that the picture is 64cm wide and 50cm high. We have set it as a texture of a box that is 0.05m or 5cm thick. Then we placed the box on the wall. The thickness of the box is the same as the thickness of the wall, but the center of the box is little bit closer to the center of the gallery, so the picture is not visible from the other side of the wall and is visible for us. We placed the picture and the video on the front wall and the sculpture in the front-right corner of the gallery.

Including videos in your exhibition is completely the same as including the paintings. The only difference is that we declared the texture of the box as a MovieTexture instead of ImageTexture.

For the sculpture, we presumed that we already have a VRML model of it and we just included it on appropriate place. Sculpture is the most complicated technique for translation from the real world to computer and the easiest for exhibiting once we have it in digital form
. We just should “inline” it on appropriate place.
Now the user can “walk” through the gallery and examine closer all the artworks. But if he/she immediately wants to go to some specific artwork, we should provide some mechanism that will do it. The easiest way is with anchors and viewpoints. Just as in HTML, in VRML there are also links to either another VRML (or HTML) file, or to some specified viewpoint in the current file. Viewpoint is a predefined set of coordinates that can be used in the same way as an anchor in HTML.

To enable that, we will have to make some changes in gallery.wrl. Since, by now, you probably understand the concept well, we will just list the changes made to the old gallery.wrl.
gallery_with_anchors.wrl:
#VRML V2.0 utf8

Inline { url "room.wrl" }

DEF Entry Viewpoint {
 position 0 0 0
 orientation 0.0 0.0 0.0 0.0
 description "Entry View"
}

DEF VPsculpture Viewpoint {
 position 3.5 0 -3.5
 orientation 0.0 1.0 0.0 -0.85
 description "Sculpture view"
}

…
The node that describes the sculpture will be different, too:

Transform {

 translation 4.5 0 -4.5

 rotation 0 1 0 0

 scale 1 1 1

 children [

 Anchor {

 url "#VPsculpture"

 description "This is a nice sculpture"

 children [

 Inline { url "sculpture.wrl" }

]

 }

]

}

Now we should explain how the viewpoints work. Definition of a viewpoint is as follows:

DEF name Viewpoint (
 position p_x_coord, p_y_coord, p_z_coord,
 orientation o_x_axis, o_y_axis, o_z_axis, angle
 description “ String “
)

All the keywords are written with normal font and the variables are written with cursive. The p_x_coord, p_y_coord and p_z_coord are coordinates of the viewpoint; o_x_axis, o_y_axis, o_z_axis are axes for the definition of the orientation that the user will have when he/she goes to the viewpoint; and angle is an angle for which the user will be rotated around the specified axes. String is the name of the viewpoint that is used in VRML player for description. For each world we can specify any number of viewpoints we want. The user will appear on the first one specified in the file. If there is no any specified viewpoint, then all included files are examined, and the first viewpoint from the first included file becomes the starting viewpoint. In the file gallery_with_anchors.wrl, at the start we defined a viewpoint called “VPsculpture”. This is a viewpoint from which the sculpture in our gallery is viewed from a nice perspective. But as the first defined viewpoint is the starting one, before the “Sculpture view” we have defined “Entry view”, so the user at the start of the navigation would appear in the center of the room, like we wanted.

Now lets look how the anchor is defined. The way of thinking is similar to <a href> tags in HTML. The row “url ‘#VPsculpture’” defines URL to which the user will be directed to. When the user clicks the sculpture, he/she immediately goes to the specified URL, in this case to the viewpoint “VPSculptures” in the same world. If we instead of the “url ‘VPSculpture’”, for instance put the row "url 'www.ipsi.co.yu'” the sculpture would be a link to the www.ipsi.co.yu site. In that case, if the user clicks the sculpture, the mentioned location would be opened in his browser.

When the user puts the cursor over an anchor, its description appears near the cursor. In this case, the description will be “This is a nice sculpture”. This is a good place where some important data (e.g. artist or name or price) about the artwork can be placed.

To bring our gallery to life, we should embed it in some HTML file. That file will be a frameset that will contain few different files. In one frame we will embed the gallery, and in others we can put floor plan of the gallery, or some other useful information. First, let's create the frameset:

index.htm:
<html>

<head>

<title>Virtual gallery</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

</head>

<frameset rows="*" cols="400,*" frameborder="NO"
 border="0" framespacing="0">

 <frameset rows="300,*" frameborder="NO" border="0"
 framespacing="0">

 <frame src="vrml.htm" name="vrmlFrame">

 <frame src="map.htm" name="mapFrame" scrolling="NO"
 noresize>

 </frameset>

 <frame src="right.htm" name="rightFrame" scrolling="NO" noresize>

 </frameset>

<noframes>
 <body>

 </body>
</noframes>

</html>

The file that will contain map of the world (map.htm) is placed in the lower left corner and will be explained later. The file that contains VRML world (vrml.htm) is placed in the upper left corner of the screen. Its width and height are 300px. Here it is:

vrml.htm:
<html>

<head>

<title>VRML</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

</head>

<body bgcolor=“#f0f2f8”>

 <OBJECT
 classid=CLSID:86A88967-7A20-11d2-8EDA-00600818EDB1
 codeBase=http://www.parallelgraphics.com/bin
 /cortvrml.cab#Version=3,1,0,54

 id="cortona" name="cortona" width="100%"
 height="100%"
 >

 <PARAM NAME="SRC" VALUE="gallery_with_anchors.WRL">

 <PARAM NAME="BORDER" VALUE="0">

 <PARAM NAME="VRML_DASHBOARD" VALUE="FALSE">

 <PARAM NAME="VRML_FULLCOLOR" VALUE="TRUE">

 <PARAM NAME="viewpoint_transition_mode" VALUE="1">

 <PARAM NAME="CONTEXTMENU" VALUE="FALSE">

 <EMBED NAME="cortona"

 HEIGHT=100%

 WIDTH=100%

 SRC="gallery_with_anchors.WRL"

BORDER=0

 VRML_DASHBOARD="FALSE"

 VRML_FULLCOLOR="TRUE"

 viewpoint_transition_mode="1"

 CONTEXTMENU="FALSE"

 </EMBED>
 </OBJECT>

</body>

</html>

Note that the VRML world is embedded as an object in HTML. At the start we can notice that the VRML world is viewed in “Cortona VRML player”. This player is automatically downloaded from the “parallelgraphics” server first time when the client calls vrml.htm file. There are several parameters that should be explained:

· SRC parameter defines a VRML world that will be seen in appropriate embedded object.

· BORDER parameter defines the width of the border around the VRML world in the html frame.

· VRML_DASHBOARD defines whether the menu (of the plug-in) that enables user to change the way of moving, is visible. Since we want the user to be able just to walk through the gallery (other possibilities are flying, panning, …), this menu should be turned off. Hence, the value of this parameter is “FALSE”.

· VRML_FULLCOLOR defines if full color mode will be used in the embedded world.

· CONTEXTMENU defines if a menu should appear if the user right-clicks a VRML world.

· viewpoint_transition_mode defines how the user will go from one viewpoint to another. If it is set to “1”, the movement will be animated. If it is set to “0”, the user will immediately appear at the specified viewpoint. As an animation is more attractive effect, we have set it to “1”.

Floor plans

It is a good idea to have a floor plan of the room, so the user would be able to have an idea about the world what he/she walks through. For this floor plan we can use a jpeg picture that has the same shape as the gallery. We can make it in our favorite picture editor. Let's call this file floorplan.jpg. The floor plan for our simple gallery is shown on Figure 3.1.
[image: image2.jpg]

Figure 3.1 Floor plan of a simple gallery

Two lines on the top represent one picture and one video record. The circle in the upper right corner represents the sculpture. This floor plan we will place in the file map.htm which is located in the bottom frame of the frame set defined in index.htm.

Now the user will have an idea about the shape of the gallery, but if we want that he/she has also an idea of his position in the gallery, we should add a marker of the position or cursor that will move over the floor plan in the same way like the user moves through the gallery. That can be done using JavaScript and DHTML. We will use a layer laid over the picture of the floor plan, which will contain an image representing a position marker. As the user moves through the gallery, position of the layer will change in the same way. Since the layer is transparent, the user will just see the movement of the marker.
Before we proceed, first we have to explain the concept of proximity sensor in VRML. It is a node that detects movements in its field of detection, and it contains data about user’s position and orientation. A proximity sensor that we will use, is defined at the start of the gallery_with_anchors.wrl, as follows:
#VRML V2.0 utf8

Inline { url "room.wrl" }

DEF Entry Viewpoint {
 position 0 0 0
 orientation 0.0 0.0 0.0 0.0
 description "Entry View"
}

DEF VPsculpture Viewpoint {
 position 3.5 0 -3.5
 orientation 0.0 1.0 0.0 -0.85
 description "VPsculpture"
}

DEF PS ProximitySensor

{

 center 0 0 0

 size 20 20 20

}

…

We defined two parameters for a proximity sensor: center and size. Center defines where the sensor will be centered, and size defines the field in which the movement of the user will be detected. Our sensor covers the area greater than the whole room, so we can detect any movement in the gallery.

Marker of the position will be presented with 8 different images. In one moment, only one gif will be visible. These gifs can be seen on the Figure 3.2. All these files are placed in a subdirectory created in the directory where we stored all previously mentioned files. Depending on the current orientation of the user, a gif that corresponds the best will be used.
	[image: image3.png]

[image: image4.png]

[image: image5.png]

[image: image6.png]

[image: image7.png]

[image: image8.png]

[image: image9.png]

[image: image10.png]

Figure 3.2 Orientation markers used in the floor plan

Let's begin with the map.htm file:

map.htm:
<html>

<head>

<title>Floorplan</title>

</head>

<body bgcolor="#f0f2f8">

 <div id="positionLayer" style="position:absolute;
 width:13px; height:15px; z-index:2; left: -175px;
 top: -150px">

 <img src="PositionGifs/up.GIF" width=12 height=12
 name="cursorPicture">

 </div>

 <div id="mapLayer" style="position:absolute;
 width:100px; height:100px; z-index:1; left: 10px;
 top: 10px;">

 <img src="floorplan.jpg" name="floorplanPicture"
 border="0" width=100 height=100>

 </div>

</body>

</html>

All the variables and functions for this part of the application are placed in the position.js file.

position.js:
<!--

var timershow;

var RoomXDim = 10;

var RoomZDim = 10;

var PicXDim = 100;

var PicZDim = 100;

function showPosition()

{

 var PS = cortona.engine.Nodes("PS");

 x=PS.Fields("position_changed").X;

 z=PS.Fields("position_changed").Z;

 angle=PS.Fields("orientation_changed").Angle
 *PS.Fields("orientation_changed").Y;

 positionObj=eval(parent.mapFrame.document.
 getElementById("positionLayer").style);

 cursorObj=eval(parent.mapFrame.document.
 getElementById("cursorPicture"));

 positionObj.left=4 + parseInt(parent.mapFrame.
 document.floorplanPicture.width)/2 +

 x*(PicXDim-3)/RoomXDim;

 positionObj.top=parseInt(parent.mapFrame.document.
 floorplanPicture.height)/2+z*(PicZDim-3)/RoomZDim;

 if (angle<-2.7475) {cursorObj.src="gifs/Down.gif";}

 else if (angle<-1.9625)
 {cursorObj.src="gifs/DownRight.gif";}

 else if (angle<-1.1775)
 {cursorObj.src="gifs/Right.gif";}

 else if (angle<-0.3925)
 {cursorObj.src="gifs/UpRight.gif";}
 else if (angle< 0.3925)
 {cursorObj.src="gifs/Up.gif";}
 else if (angle< 1.1775)

 {cursorObj.src="gifs/UpLeft.gif";}
 else if (angle< 1.9625)
 {cursorObj.src="gifs/Left.gif";}

 else if (angle< 2.7475)
 {cursorObj.src="gifs/DownLeft.gif";}

 else
 {cursorObj.src="gifs/down.gif";}

 timershow=setTimeout("showPosition()",20);

}

function StopTimer()

{

 clearTimeout(timershow);

}

function StartTimer()

{

 timershow=setTimeout("showPosition()",20);

}

//-->

Variable timershow is used as a timer. The timer in JavaScript serves to call some function after predefined time interval. The syntax of this function is:

Var timershow = setTimeout(
 “name_of_a_function()”,
 interval)
The variable timershow is created in memory and contains data about next call of the function name​_of_the_function()

Here we have made a sort of time-loop. After some predefined interval, we will call the function that will “read” the user’s position in the proximity sensor. Based on the read data, position of the postionLayer in map.htm file will change to appropriate calculated position, and after that, cursorImage from the map.htm file will show another direction, based on the orientation of the user. At the end, the same function will be called but with delay of 20ms. 20ms refresh rate is still good enough for a user, but it also does not overload the system.

Variables RoomXDim and RoomZDim contain dimensions of the room and variables PicXDim and PicZDim contain dimensions of the floorplan.jpg. Keep in mind that Z coordinate of the VRML world corresponds to Y coordinate on the floor plan! Y coordinate in VRML world is vertical coordinate and does not have meaning in the floor plan.
The function ShowPosition() is the main function in this file. It changes the position marker based on the user’s position. This function uses the so called EAI interface. EAI interface is a part of VRML standard and is used for communication between HTML file and VRML world embedded as an object in HMTL. At first, in the ShowPosition() we have accessed the previously defined proximity sensor PS. As mentioned before, this proximity sensor tracks movements of the user. Using the position_changed and orientation_changed fields we can get information about user's position and orientation. The position_changed field has x, y and z coordinate, and orientation_changed field has x-axis, y-axis, z-axis and angle. The angle is always greater than 0. To get real information about the angle, we should multiply value of the angle and value of y-axis (“vertical" axis), which can be -1 or 1:

angle=PS.Fields("orientation_changed").Angle *

 PS.Fields("orientation_changed").Y;
Next, we set variables positionObj and cursorObj to appropriate layers from map.htm. Finally we set top edge of the position marker to appropriate place above the floor plan of the room in the map.htm:

positionObj.left= 4 + parseInt(parent.mapFrame.document.
 floorplanPicture.width)/2 + x*(PicXDim-3)/RoomXDim;

Corrective factor 4 at the beginning of the formula centers the cursor layer to the center of the floor plan. It depends on the look of the floor plan and can be determined through experiments. As the center of the gallery (0, 0) corresponds to the center of the floor plan (50, 50) – in our case, floorplan.jpg has dimensions 100px by 100px – there is additional factor

parseInt(parent.mapFrame.document.
 floorplanPicture.width)/2

and finally there is a factor that translates the location in the VRML world to the location in floor plan. Corrective factor 3 in x*(PicXDim-3)/RoomXDim depends on the ratio between the gallery and the floor plan and also should be determined through experiments.

After this, depending on the rotation of the user, it is calculated which .gif for the marker position will be used. Finally, this function calls itself recursively after a delay of 20ms. First time ShowPosition() is called when the timer is set, and that occurs when vrml.htm is loaded. This is done by setting the function StartTimer() in onLoad function of vrml.htm. Hence this file should be again little bit changed, so it looks like this:

vrml.htm:
<html>

<head>

<title>VRML</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

<script language="JavaScript" src="position.js">

</script>

</head>

<body bgcolor="#f0f2f8"

 onLoad="JavaScript:StartTimer()">

…

Note that the file position.js is included as a script.

At this point you should be able to create a modular virtual gallery and its floor plan together with the marker position. There are several different things that can be added after this. You might want to allow the user to change his/her position by clicking on some location on the floor plan; then, it is possible to make a stand-alone tool (WYSIWYG editor) for creating the galleries which will automatically produce VRML code for you; and so on.
Using VRML has some limitations. For instance, if a user wants to get a better look at the picture and gets closer, it will become blurred and “pixelized”, which is not a desirable thing. You should consider the idea to include one more frame in your page, which will automatically load the zoomed image when user comes near the object.
Transferring large, detailed pictures, even with broadband connections can be time consuming, so it is advisable to implement some sort of faster, smart zoom. In the next section we will describe how an interface for smooth zooming can be made.
3.3 Zooming

As mentioned at the beginning of the chapter there is a very important relation between the quality of the presentation of an artwork and size of the same presentation. A simple compromise is good enough for cheap and quick solutions that do not require any programming effort. However for a serious project that will include many advanced techniques it would not be very smart to use simple compromise, especially when we don’t know in advance what sort of artworks we will have. If we predefine too small size for presentation of each artwork, a painting like e.g. Bruegel’s
 one, full of details and based on them, will loose much of its essence when looked over the web. On the other side, if the predefined size is too big, there is a risk that the user will “click away” from the site immediately when he/she sees how much download will last. This problem can be solved in this way: at first we can show a smaller version of the picture. The user can enlarge it simply by stretching. When he stretches the picture, visible part is always of the same dimensions. In this way the user sees only one part of the picture. After some steps stretched painting can become pixilated and blurred. Before that moment only visible part of the image can be changed with new, better version. It can be done in a relatively short time. Although the quality of the picture is better, the size of the new downloaded part is several times smaller than whole new version of the picture. When the user changes the part that he/she currently sees, new version of the revealed part is downloaded.

For doing this there are two different approaches:

1. We can load the original picture of large size on the server, and based on the received query from the client, server can send exactly the visible part of the picture on the client.

2. We can have matrix of e.g. 5x5 tiles of the original picture on the server. The client demands all the tiles that are visible.

Advantages of solution 1 are that it has less sent information over the web and that it doesn’t require any additional space on the server. One very important disadvantage is that algorithms should be incomparable more complicated.

Advantage of Solution 2 is that it offers several times simpler algorithms and disadvantage is that it requires additional space on the server for predefined parts of the picture. Another disadvantage is that some unnecessary parts of the picture are sent (parts that belong to visible tiles on the edges of the visible area, but they aren’t visible), but if we expect that the user will examine the picture part by part by panning it, this can be considered as an advantage because it will not be necessary to send demand to the server every time when the user changes the visible part of the picture even just for one pixel, but only on the “crossing” from one tile to another one. Because all of said, for the application like a virtual gallery, solution 2 is undoubted better one.

Furthermore, we should determine what programming language we will use. Two solutions are possible: Java and JavaScript + DHTML. Because of its simplicity JavaScript is better for educational purposes so we will use JavaScript + DHTML combination, but the essence of the solution can be easily transferred to Java.

Picture zoom

At first we will presume that the reader has the basic knowledge about HTML “hard-coding” and basic knowledge JavaScript, DHTML and ASP. If no, there are some good tutorials about these topics on: http://galeb.etf.bg.ac.yu/~vm/tutorial/tutorial.html.

As already mentioned, starting point for the applications should be a picture and its parts. Parts can be made in several different ways. You can use your favorite application for image manipulation, or try specialized software that we developed for Fraunhofer IPSI Darmstadt Institute (which is the copyright holder; contact them on www.ipsi.fhg.de).

Hence every painting is parted into a matrix of NxN elements, where N is an integer. It is not recommended that it would be below 4, for normal purposes 5 is enough, but depending on the size of the painting it can go up to 10, especially if the painting that will be shown is extremely large (e.g. murals) and has a great number of details.

Here is an example.

At first lets say that a good quality JPEG picture has size on the disk that is equal approximately 1/3 of the number of pixels.

Let's assume that we have a picture of 800x600 pixels. And let's assume that we reduce it to 200x150 pixels size to show it for the first glance. The reduced version will have:

200*150 = 30000 pixels

It size on disk will be 30000/3=10000 bytes or about 10KB. This would be enough for a first glance on the picture, but now lets assume that the user wants to see the picture better. If we just simple send whole the picture to the client the download size will be:

[image: image11.wmf]KB

P

size

160

3

/

600

*

800

»

=

which is definitely too large for download at once by a dial-up connection. Very soon, the user will loose his patience and leave the site.

 But now we can start with different approach. At first we will reduce the picture to 200x150 version. Let's call this version version_1. The original picture we will call version_2. We will divide these pictures into two 4x4 matrices. Each matrix will contain parts of the same picture, but the quality will be different. One matrix called it matrix_1, will contain tiles of worse quality, and will be placed in a folder on the server named picId/1 in a form of 4*4=16 different JPEG files. Each file will be 10KB/16=640B long. The other matrix, called matrix_2, will contain tiles of better quality, and will be placed in a folder on the server named picId/2 in a form of 4*4=16 different files. Each file will be 160KB/16=10KB long. Each one of these JPEG files is named as i_j.jpg where i is the x coordinate of the tile in original picture, and j is the y coordinate of the original picture. In the next table You can see the form of splitting the image into the parts on Figure 3.3. Each tile is contained in the named file.

	1_1.jpg
	1_2.jpg
	1_3.jpg
	1_4.jpg

	2_1.jpg
	2_2.jpg
	2_3.jpg
	2_4.jpg

	3_1.jpg
	3_2.jpg
	3_3.jpg
	3_4.jpg

	4_1.jpg
	4_2.jpg
	4_3.jpg
	4_4.jpg

Figure 3.3 Splitting images into parts

The parts of the matrix_1 are placed in a HTML table that has the same dimensions as the number of tiles. In this case it has 4x4 cells and has the same form as the Table1. The table hasn’t borders so the user has an illusion of viewing whole the picture instead of 16 tiles joined in one great table. Download size for this table should be about N*N*size_of_worse_quality_tile and in this case is about 10KB. This table is placed on DHMTL layer, that we will call “ImageLayer”. Over image layer there is another four layers that form a “frame” like on Figure 3.4.

[image: image12.png]ImageLayer

Figure 3.4 Image layers

Another four layers are opaque (contain opaque pictures of one color and of their own dimensions) and have the same color as the environment. Lets call them BorderLayers. There is the fifth layer too. It is a layer that contains a completely transparent picture. It is positioned over the ImageLayer and has the same dimensions. Its name is WindowLayer. The purpose of this layer will be explained later. The user has an illusion of seeing just a picture on the background but the reality is that he/she sees the picture through the transparent WindowLayer, and the edges of the picture exactly fit between BorderLayers.

It is very important that all this construction in placed in one HTML frame (please note that this HTML frame hasn’t any relation with “frame” for the picture that is another name for BorderLayers) that is not scrollable. So whole HTML page can be like on Figure 3.5.

[image: image13.png]

Figure 3.5 HTML page used for image zooming

Layers numbered with 1, 2, 3 and 4 are BorderLayers. The layer marked with ImageLayer is below the Layer5 (WindowLayer), but as the Layer5 is complete transparent, whole ImageLayer can be seen.

Now, let's take a look to some code. At first, we assumed that we made whole the construction for a specific case when we have a picture that is 800 pixels width and 1200 pixels height, but we show it in a 200x300 pixels area. Furthermore we assumed that we have already created tiles for 2 different qualities, as described above. In the current folder should exist the pictures zoom.gif, full.gif and empty.gif. zoom.gif is an icon for zooming. Full.gif is a 1x1 pixel picture that contains just the color of the background. Empty.gif is a 1x1 pixel picture that contains a transparent picture. These two gifs can be easily created in your favorite program for image manipulation.

Zoom.htm:

<html>

<head>

<title>Zoom</title>

</head>

<body>

<div id="Layer1" style="position:absolute; width:250px;

 height:25px; top:0; left:0; z-index:2">

<img src="full.gif" width="250" height="25"

 name="Full12"></div>

<div id="Layer2" style="position:absolute; width:25px;

 height:300px; top:25px;left:0px; z-index:2">

<img src="full.gif" width="25" height="300"

 name="Full32"></div>

<div id="Layer3" style="position:absolute; width:25px;

 height:300px; top:25px;left:225px; z-index:2">

<img src="full.gif" width="25" height="300"

 name="Full32"></div>

<div id="Layer4" style="position:absolute; width:250px;

 height:50px; top:325px;left:0px; z-index:2;">

<img src="full.gif" width="250" height="50"

 name="Full42">

</div>

<div id="WindowLayer" style="position:absolute;

 width:198px; height:299px; z-index:2; left: 26px;

 top: 25px; visibility: visible" ><img src="empty.gif"

 width="200" height="300" name="windowImg">

</div>

<div id="pictureLayer" style="border:0;

 position:absolute; width:200; height:300; top: 24px;

 left: 24px; z-index:1; left: 25px; top: 27px;">

 <table width="200" border="0" cellspacing="0"

 cellpadding="0" name="tabela" >

 <tr>

 <td>

 <img src="picture/1/1_1.jpg" width=50 height=75

 name="s11" >

 </td>

 <td>

 <img src="picture/1/1_2.jpg" width=50 height=75

 name="s12" >

 </td>

 <td>

 <img src="picture/1/1_3.jpg" width=50 height=75

 name="s13" >

 </td>

 <td>

 <img src="picture/1/1_4.jpg" width=50

 height=75name="s14" >

 </td>

 </tr>

 <tr>

 <td>

 <img src="picture/1/2_1.jpg" width=50 height=75

 name="s21" >

 </td>

 <td>

 <img src="picture/1/2_2.jpg" width=50 height=75

 name="s22" >

 </td>

 <td>

 <img src="picture/1/2_3.jpg" width=50 height=75

 name="s23" >

 </td>

 <td>

 <img src="picture/1/2_4.jpg" width=50 height=75

 name="s24" >

 </td>

 </tr>

 <tr>

 <td>

 <img src="picture/1/3_1.jpg" width=50 height=75

 name="s31" >

 </td>

 <td>

 <img src="picture/1/3_2.jpg" width=50 height=75

 name="s32" >

 </td>

 <td>

 <img src="picture/1/3_3.jpg" width=50 height=75

 name="s33" >

 </td>

 <td>

 <img src="picture/1/3_4.jpg" width=50 height=75

 name="s34" >

 </td>

 </tr>

 <tr>

 <td>

 <img src="picture/1/4_1.jpg" width=50 height=75

 name="s41" >

 </td>

 <td>

 <img src="picture/1/4_2.jpg" width=50 height=75

 name="s42" >

 </td>

 <td>

 <img src="picture/1/4_3.jpg" width=50 height=75

 name="s43" >

 </td>

 <td>

 <img src="picture/1/4_4.jpg" width=50 height=75

 name="s44" >

 </td>

 </tr>

</table>

</div>

</body>

</html>

Now we can take a look at the control.htm. This file contains just a call of the zoom function that will enlarge the image.

Control.htm:

<html>

<head>

<title>Control</title>

<script language="JavaScript" src="zoom.js"></script>

</head>

<body>

 <img src="zoom.gif"

 OnMouseDown="JavaScript:zoom(1); return false;">

</body>

</html>

As the zoom(int direction) function is defined in zoom.js file, we have to include that file in the tag <script></script>. This is how zoom.js file looks like:

<!—

var step=5;

var THRESHOLD=100;

var PicWidth=200;

var PicHeight=300;

var DIVISION=4;

var PartWidth=PicWidth/DIVISION;

var PartHeight=PicHeight/DIVISION;

var rate=PicHeight/PicWidth;

pictureObj=eval(parent.zoomFrame.document.

 getElementById("pictureLayer").style);

windowObj=eval(parent.zoomFrame.document.

 getElementById("windowLayer").style);

function zoom(fact)

{

 var WindowHalfX=100;

 var WindowHalfY=150;

 var WindowCenterX=parseInt(windowObj.left) –

 parseInt(pictureObj.left) + WindowHalfX;

 var WindowCenterY=parseInt(windowObj.top) –

 parseInt(pictureObj.top) + WindowHalfY;

 var factor=fact*(step);

 PartWidth +=factor;

 PartHeight += factor*rate;

 for (i=1;i<=DIVISION;i++){

 for (j=1;j<=DIVISION;j++){

 eval ("parent.zoomFrame.document.s" + i + j +

 ".width=" + PartWidth);

 eval ("parent.zoomFrame.document.s" + i + j +

 ".height=" + PartHeight);

 }

 }

 var WindowCenterX=parseInt(windowObj.left) –

 parseInt(pictureObj.left) + WindowHalfX;

 var WindowCenterY=parseInt(windowObj.top) –

 parseInt(pictureObj.top) + WindowHalfY;

 pictureObj.left = parseInt(pictureObj.left) –

 (factor * WindowCenterX / PartWidth);

 pictureObj.top = parseInt(pictureObj.top) –

 (factor*rate*WindowCenterY/PartHeight);

}

//-->

The variable fact is just the direction of the zoom (+1 for zoom in, -1 for zoom out)

The constant DIVISION is a variable that contains dimensions of the matrix that contains the tiles. In this case it is 4.

The constant THRESHOLD defines the width of the parts should reach when they should be replaced with better versions. Depending on the size of the picture this can be an array that contains different widths. Each time when one member of the array is reached, the tile is replaced with better version. This idea won’t be treated here, because it is quite straightforward improvement of the showed solution.

The variable step contains the step of the zoom. Values step=4 or step=5 produce good results. Smaller step is too slow. Larger step is too rough.

The variable rate is the ratio between picture height and picture width.

The variable PicWidth and PicHeight should be defined outside the code like a FLOAT variable. This is very important because otherwise for decimal ratios after zooming the picture looses its real form.

The variable PartWidth and PartHeight should be defined outside the code like a FLOAT variable. This is very important because otherwise for decimal ratios after zooming the picture looses its real form. These variables define dimensions of each tile.

The variable WindowHalfX contains value of the half width of the WindowLayer.

The variable WindowHalfY contains value of the half height of the WindowLayer.

Statement eval(string s) in JavaScript executes statement contained in string s. Part of the code inside the brackets sets the picture dimensions to new ones.

After the resizing, the picture should be centered so for this purpose serve last two statements.

Index.htm file contains all the necessary frames for image zoom. As you can see, the frame that contains zoom.htm is defined as “scrolling=’NO’ noresize”. In this way resizing of the picture won’t induce appearance of the scrollbars.

Index.htm:

<html>

<head>

<title>Smooth zoom</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

</head>

<frameset cols="250,*" frameborder="NO" border="0"

 framespacing="0">

 <frameset rows="350,*" frameborder="NO" border="0"

 framespacing="0">

 <frame src="zoom.htm" name="zoomFrame"

 scrolling="NO" noresize>

 <frame src="control.htm" name="controlFrame"

 scrolling="NO" noresize>

 </frameset>

 <frameset rows="200,*" frameborder="NO" border="0"

 framespacing="0">

 <frame src="empty.htm" name="empty1Frame"

 scrolling="NO" noresize>

 <frame src="empty.htm" name="empty2Frame"

 scrolling="NO" noresize>

 </frameset>

</frameset>

<noframes>

<body>

</body>

</noframes>

</html>

Now let’s assume that the user clicks the “zoom_button”. The html tag for this button should be like in the code. After clicking it the function zoom (int direction) from the file zoom.js will be called. This function at first declares pictureLayer and windowLayer from zoom.htm file as objects pictureObj and windowObj. Variables WindowHalfX and WindowHalfY contain information about half width of the windowLayer and half height of windowLayer so the center of the windowLayer can be found. This center is necessary for centering picture after zoom. Without it, the picture would be resized just right and down, but with it the user has an impression of zooming the center of the visible part of the picture. One of the purposes of the WindowLayer now can be understood. It contains direct information about the visible part of the picture. PartWidth and PartHeight are variables that define dimensions of each tile. Variable factor contains information about the step of the zoom.

In the nested loop, each tile is resized to new dimensions.

After the loops go statements that center the ImageLayer, so the user has an illusion of zooming the center of the visible part of the image.

After finishing the function, the picture is enlarged for 5 pixels. Each time the user wants to enlarge the image, he has to click the button. This is not very nice, so it would be automated. The new idea is that as long as the user holds the button, the image will be enlarged, so the user has an impression of “smooth zoom”. This can be done with one loop that examines the button of the mouse, but it is not very practical because during the time when the loop is active, nothing else can be done. Hence a new approach has to be found. That new approach can be done with timers.

The timer in JavaScript serves to do some job after predefined time interval. The syntax of this function is:

Var timer=setTimeout(“name_of_a_function()”, interval)
The variable timer is created in memory and contains data about next call of the function name​_of_the_function()
Now we will make a sort of time-loop. At the end of each call of the function zoom(direction) the same function will be called. This will last until we turn off the timer. The timer can be turned off by a statement:

clearTimeout(timer);

This function will be called when the user release the mouse button. Now the whole scenario goes like this:

1. The user pulses the mouse button.

2. This action calls the function zoom(direction)
3. Function zoom(direction) enlarges the image as described above

4. At its end, function zoom(direction) calls itself again

5. Steps 3. and 4. are repeated until the user release the button

6. In the handler for event MouseUp, that occurs when the mouse button is released, clearTimeout(timer) function stops already set call that would be occurred in future. As this call is disabled, new call of the function zoom(direction) won’t be realized until the user again presses the mouse button.

For this feature, next changes in the code should be provided:

1. Variable timer should be defined at the start of the zoom.js so now it begins with:

var timer;

var PartWidth=50;

var PartHeight=75;

var step=5;

2. A new row should be at the end of zoom.js so now it would be like:

pictureObj.top = parseInt(pictureObj.top) –

 (factor*rate*WindowCenterY/PartHeight;

clearTimeout(timer);

timer=setTimeout("zoom(1)",10);
3. A handler for releasing mouse button should be added so the anchor in control.htm now looks like:

 <img src="zoom.gif"

 OnMouseDown="JavaScript:zoom(1); return false;"

 OnMouseUp="JavaScript:clearTimeout (timer)"

 >

And that’s it.

Next step in the construction is defining the thresholds (Level of details). After some stretching the picture will become “pixelizated”. Before it happens, on some predefined size, the algorithm should change all the visible tiles of the picture.

In the zoom() function, after resizing the picture the new size of the picture should be checked. If it exceeds the threshold, all visible tiles should be changed. Next code should be added at the end of the zoom.js file before the manipulation of timer:

if ((PartWidth>THRESHOLD)&&(OldPartWidth<=THRESHOLD))

{

 var xstart=Math.floor((parseInt(windowObj.left)-

 parseInt(pictureObj.left))/PartWidth);

 var ystart=Math.floor((parseInt(windowObj.top)-

 parseInt(pictureObj.top))/PartHeight);

 var xnum=Math.floor((parseInt(windowObj.left)+

 parseInt(windowObj.width) –

 parseInt(pictureObj.left))/ PartWidth);

 var ynum=Math.floor((parseInt(windowObj.top)+

 parseInt(windowObj.height)-parseInt(pictureObj.top))/

 PartHeight);

 changePic(xstart+1,xnum+1,ystart+1,ynum+1);

}
In the same file, changePic(xstart,xnum,ystart,ynum) function should be also defined. It will change a matrix of a matrix of xnum*ynum tiles starting of xstart tile from left and ystart tile from top. Now follows the function changePic(xstart,xnum,ystart,ynum).

function changePic(xstart, xnum, ystart, ynum)

{

 xstart=Math.max(xstart,1);

 ystart=Math.max(ystart,1);

 xnum=Math.min(xnum,DIVISION);

 ynum=Math.min(ynum,DIVISION);

 pictureObj=eval(parent.zoomFrame.document.

 getElementById("pictureLayer").style);

 for (i=xstart;i<=xnum;i++)

 {

 for (j=ystart;j<=ynum;j++)

 {

 s="parent.zoomFrame.document.images.s"+ i + j +

 ".src='picture/2/"+ i +"_"+ j + ".jpg'";

 eval(s);

 }

 }

 }
Because we can't know dimensions of the picture, sometimes happens (when the border of the visible field overlaps the border between tiles) that this function is with one cell overmuch. First four rows solve the problem.

Picture panning

The next problem is panning of the picture. If the picture is zoomed, the user can see only a part. But if he/she wants to see the rest of the picture he/she should be able to move the picture so all the parts can be seen.

For this task, at first some buttons should be created in control.htm, so it has the form as on Figure 3.6. Beside the mentioned control for zooming, it has added four arrows. Each arrow has moves the picture in one direction, so the structure of the control.htm file should contain controls for moving the picture, so next rows should be added (we assume that in the local folder exist gifs for each one of four actions: up.gif, down.gif, left.gif, right.gif).

[image: image14.png]

Figure 3.6 The control.htm page used for image zooming

 <img src="left.gif"

 OnMouseDown="JavaScript:looplr=true;

 scrollingPic(0,-5);return false"

 OnMouseUp="JavaScript:looplr=false;

 clearTimeout(timerlr)"

 OnMouseOut="JavaScript:looplr=false;

 clearTimeout(timerlr)">

 <img src="right.gif"

 OnMouseDown="JavaScript:looplr=true;

 scrollingPic(0,5);return false"

 OnMouseUp="JavaScript:looplr=false;

 clearTimeout(timerlr)"

 OnMouseOut="JavaScript:looplr=false;

 clearTimeout(timerlr)">

 <img src="up.gif"

 OnMouseDown="JavaScript:looplr=true;

 scrollingPic(1,-5);return false"

 OnMouseUp="JavaScript:looplr=false;

 clearTimeout(timerlr)"

 OnMouseOut="JavaScript:looplr=false;

 clearTimeout(timerlr)">

 <img src="down.gif"

 OnMouseDown="JavaScript:looplr=true;

 scrollingPic(1,5);return false"

 OnMouseUp="JavaScript:looplr=false;

 clearTimeout(timerlr)"

 OnMouseOut="JavaScript:looplr=false;

 clearTimeout(timerlr)">

In zoom.js some additional variables should be added following the function for image scrolling. The added rows can be as follows:

var timerlr;

function scrollingPic(dir,fact)

{

 var oldLeft=Math.floor((parseInt(windowObj.left)-

 parseInt(pictureObj.left))%PartWidth);

 var oldTop=Math.floor((parseInt(windowObj.top)-

 parseInt(pictureObj.top))%PartHeight);

 var oldRight=Math.floor((parseInt(windowObj.left)+

 parseInt(windowObj.width)-

 parseInt(pictureObj.left))%PartWidth);

 var oldBottom=Math.floor((parseInt(windowObj.top)+

 parseInt(windowObj.height)-

 parseInt(pictureObj.top))%PartHeight);

 tmplr=fact;

 tmpdir=dir;

 if (

 (parseInt(pictureObj.left)-

 fact*(dir^1)<parseInt(windowObj.left))

 &&

 (parseInt(pictureObj.top)-

 fact*(dir^0)<parseInt(windowObj.top))

 &&

 (parseInt(pictureObj.left) +

 parseInt(pictureObj.width) –

 3*fact*(dir^1)>parseInt(windowObj.left)+

 parseInt(windowObj.width))

 &&

 (parseInt(pictureObj.top) +

 parseInt(pictureObj.height) –

 3*fact*(dir^0)>parseInt(windowObj.top)+

 parseInt(windowObj.height))

)

 {

 pictureObj.top=parseInt(pictureObj.top) –

 fact*(dir^0);

 pictureObj.left=parseInt(pictureObj.left) –

 fact*(dir^1);

 if (PicWidth>THRESHOLD)

 {

 var newLeft=Math.floor((parseInt(windowObj.left)-

 parseInt(pictureObj.left))%PartWidth);

 var newTop=Math.floor((parseInt(windowObj.top)-

 parseInt(pictureObj.top))%PartHeight);

 var newRight=Math.floor((parseInt(windowObj.left)+

 parseInt(windowObj.width)-

 parseInt(pictureObj.left))%PartWidth);

 var newBottom=Math.floor((parseInt(windowObj.top)+

 parseInt(windowObj.height)-

 parseInt(pictureObj.top))%PartHeight);

 xstart=Math.floor((parseInt(windowObj.left)-

 parseInt(pictureObj.left))/PartWidth);

 ystart=Math.floor((parseInt(windowObj.top)-

 parseInt(pictureObj.top))/PartHeight);;

 xnum=Math.floor((parseInt(windowObj.left)+

 parseInt(windowObj.width)-

 parseInt(pictureObj.left))/PartWidth);

 ynum=Math.floor((parseInt(windowObj.top)+

 parseInt(windowObj.height)-

 parseInt(pictureObj.top))/PartHeight);

 if((newLeft>oldLeft)&&(!dir)&&(fact<0))

 changePic(xstart+1,xstart+1,ystart+1,ynum+1);

 if((newRight<oldRight)&&(!dir)&&(fact>0))

 changePic(xnum+1,xnum+1,ystart+1,ynum+1);

 if((newTop>oldTop)&&(dir)&&(fact<0))

 changePic(xstart+1,xnum+1,ystart+1,ystart+1);

 if((newBottom<oldBottom)&&(dir)&&(fact>0))

 changePic(xstart+1,xnum+1,ynum+1,ynum+1);

}

 clearTimeout(timerlr);

timerlr = setTimeout("scrollingPic(tmpdir,tmplr)"

 , 1);

 }

}

The variable timerlr is a timer for moving the picture. The timers are described in the part about smooth zooming.

The variables oldTop, oldBottom, oldLeft and oldRight contain information about the position of the edges of the ImageLayer. They are used later in the function ScrollingPic() for comparing positions after moving with the old ones. In that way, the algorithm decides if some new tiles are appeared in the visible area. If the threshold is also exceeded, better versions of the new appeared tiles will be requested from server.

The variables tmplr and tmpdir serve for the call of the function over the timer. JavaScript sometimes make problems, if there is no these temporal variables.

After these variables, there is an if-else statement that determines if moving of the ImageLayer is possible i.e. if the 1-pixel-edge stays below the FrameBorders after moving. If so, movement is performed. After performing the movement, the algorithm checks if there the threshold is exceeded and if some new tile has appeared in the visible area. If there are some new tiles and the threshold is exceeded, the function ChangePic() is called.

At last the lrtimer is reset again, and the cycle continue in a similar way like in the zoom() function.

Further improvements

Because of limited space, some advanced ideas can’t be explained here. However, the reader is encouraged to experiment. If we make an .asp or .jsp file instead of the existing zoom.htm, we can make a good functional page for any virtual gallery we want. Simply by moving declaration of the variables PicWidth into zoom.htm and defining it as a ASP variable that gets from a calling file it is very easy to make a generic page that will be used whenever a user choose a painting for examinining.

Instead of clicking buttons for zoom, whole interface can go in different direction: user can select a part of the image and enlarge it immediately, or he/she can pan the image simply by dragging it over the visible area. Selecting of a part of the image in Java can be simulated by drawing a rectangle, and in JavaScript can be imitated by creating a transparent image with opaque border on a resizable layer or simpler, creating a layer with border=1.

Some other ideas are following:

· The frame for image zoom can be realized as the pop-up window
· Each painting can be opened in its own window

· For showing sculptures, you can add 3rd dimension in the matrix of tiles. First two dimensions are used in the same way like for pictures, but a sculpture is seen from one angle. The tiles of all other angles are placed in 3rd dimension.

Content-Oriented Image Search

When it comes to image classification and searching, dominant technique today is manual tagging. That approach is logical and is working perfectly; using supplied search tools, you can find appropriate photos or other images in very short time. The only problem is the time spent for manual reviewing and image tagging. That does not pose a problem when you have several hundred pictures in hands – but when faced with thousands and thousands of pictures, it is no longer negligible. What if we could be able to let the machines do our job? That is the same thing as comparing Web directories (manually reviewed) and search engines (machines letting their crawlers pick-up pages which are afterwards parsed and indexed).

The idea of automatic content analysis of images sure sounds tempting, but as soon as you try to make it happen, some serious problems occur. A lot of people around the world is working on this, and we do not claim that we are supreme authorities on the subject, but we do think that our experience can be useful.

The system we created was developed primarily to be used with artistic paintings. After the image is analyzed, some features are automatically extracted in order to enable the content-oriented image search. These features can be divided into two categories:

Global features are extracted using all pixels from the image. For artistic paintings, colors are the most important feature. Global features are represented with dominant colors and picture saturation and brightness. A color is said to be dominant if it occupies more than 1/9th of the overall picture.

Local features are represented with objects, which are formed during the segmentation process. These objects are divided into two categories: background objects (occupy more than 1/9th of the picture size) and smaller objects and object sets (occupy less than 1/9th of the picture size). Both bigger objects and object sets are represented with their dominant colors, saturations, luminance and positions within the picture.

Using the fore mentioned features you might be able to differentiate some basic painting types. For example, you may want to find all paintings with dark green colors, medium saturation, and blue background in the upper part and a lot of red and orange objects in the center of the painting. That might represent the landscapes showing green fields with flowers or trees, and the sky above them. However, because dark colors are dominant, we may get landscape at night or at cloudy weather. Of course, things are not that simple, but we will come back to that later. For now, let's see how the feature extraction can be done.

4.1 The Algorithm

Figure 3.1 shows the algorithm used for object classification. The important parameters used during image processing are following:

· number of different hue level we want to use – ihmax,
· number of different saturation levels – ismax,

· number of different luminance level – ilmax,
· the highest difference between two hue values that can be considered as same – delta_hue,
· the highest difference between two saturation values that can be considered as same – delta_sat,
· the highest difference between two luminance values that can be considered as same – delta_lum.

[image: image15.emf]Load parameters, input and output directory

Open the picture

Create database objects, prepare them

and put in XML file and database

Create sorted array of objects

Merge objects into bigger objects

Create objects

Determine histogram

Put the picture into the reduced matrix

Determine the filter

Figure 4.1 The algorithm used for object classification

After the picture is opened, it is advisable to determine so called filter value. This means that we will take each filterth pixel of the horizontal dimension and each filterth pixel of the vertical dimension from the original image and put it into the matrix called reduced_matrix. This is done to reduce the number of operations for each image. The bigger the image, the greater the filter value should be, so the analysis can be done in reasonable amount of time.

For example if we set the filter value to 7, every 7th pixel of the original painting will be used (in both horizontal and vertical directions). This will decrease picture size nearly 49 times, but if the picture is large enough, the main characteristics will remain unchanged (we might only loose some minuscule object, which anyway are not important to us).

In order to determine optimal filter values depending on the picture size we have done many experiments and come to the following conclusions shown in Figure 3.2
	S - picture size
(in pixels)
	filter value

	S < 12000
	1

	12,000 < S < 108,000
	3

	108,000 < S < 300,000
	5

	300,000 < S < 588,000
	7

	S > 588,000
	9

Figure 4.2 Determining filter value

4.2 Creating histogram

From the reduced_matrix we can create the histo array – it shows which pixels correspond to the hue, saturation and luminance values calculated from the ihmax, ismax, ilmax, delta_hue, delta_sat and delta_lum parameters. Using values calculated during histogram creation, we are able to extract general objects, i.e. group of interconnected pixels which hue, saturation and luminance values belong to the same range.

All pixels in reduced_matrix are represented by RGB values. Unlike the HSL values, RGB values do not correspond to the human perception. Each picture has a specific set of colors and does not include all possible colors. There are a lot of similar colors in the picture which cannot be distinguished. Therefore, we want to create a one-dimension array with all the different colors which can be observed by the human eye.

It would be too demanding to include all colors known to human perception in the histogram array. It is also unnecessary, since we cannot see any difference between many of them. Based on our research we found out that it is enough to define 102 luminance levels, 60 hue levels, and 21 saturation levels. With these values you cannot see any difference between the original picture and the picture with decreased number of levels applied. After further research we found that there is a very small difference between the original picture and the picture with 30 luminance levels, 24 hue levels and 7 saturation levels. Since this is our opinion, we defined these levels as parameters that can be changed (the already mentioned ilmax, ihmax and ismax values).

Let's take a look at the HLS system shown in Figure 3.3. Hue represents color as a mixture of two out of three basic colors: red, green and blue. Saturation describes the amount of the third base color. The greater the saturation, the smaller is the amount of the third color, and vice versa. If saturation has maximum value (240) we have a pure color. These colors do not exist in nature since there is always some amount of the third basic color present. If the saturation has minimum value (0) we have a grey color. Luminance describes the intensity level – it determines whether the color is dark or light. Black and white colors are any colors with the minimum or maximum luminance, respectively.

[image: image16.jpg]Basic colors:

Custom colors:

ERENT

0K I Cancel

o I ColorSolid |\ [120

Hue: |160 Red |0
Sat:|240 Green: |0
Blue: [255

Add to Custom Colors

Figure 4.3 HLS system

Now, we are going to encode 3D HLS system into 1D histogram. The zero index element of the histogram array represents black color. The second element (index 1) represents white color. The histo[2] to histo[ilmax] is reserved for different luminance variations of grey color. We may observe that there are ilmax-2 different variations, although we defined ilmax different variations. In ilmax luminance variations we included white and black colors, which have already been stored inside the histogram. As for grey, for all other colors there will be ilmax-2 different luminance values. Number of all other colors is determined by the number of hue levels, ihmax. Each hue level has ilmax-2 luminance levels, and each luminance level has ismax–1 saturation levels. Although we have defined ismax saturation levels, one level is reserved for grey color that has already been stored inside the histogram. So, in the end we have 2 + ilmax-2 + ihmax*(ismax-1)*(ilmax-2) = ilmax + ihmax*(ismax-1)*(ilmax-2) different colors inside the histogram.

Range of hue values for each hue level is hue = 240/ihmax. All hue values within certain range are coded with the value from the middle of the range (hue level). According to this, hue levels are: 0, 1*hue, … , (ihmax-1)*hue. If we take a look at Figure 3.3, we can see that colors at the end of hue coordinate are similar to the colors at the beginning. The first hue level represents range from 0 to hue/2 and also from 240-hue/2 to 240. The range for any other hue level with the sequence number j is from j*hue/2 to (j+1)*hue/2. For example: if we have ihmax = 24, the range is hue = 240/ihmax = 10, and all hue values from 25 to 35 are considered to be 30, which is their hue level.

Range of saturation values for each saturation level is sat = (240-20)/(ismax-1). All saturation values within the certain range are considered as a saturation value from the middle of the range (saturation level). According to this, saturation levels are: 20+sat/2, 20+1*sat+sat/2, … , 20+(ismax-2)*sat+sat/2. Saturation values smaller than 20 are considered to be grey color.

Range of luminance values for each luminance level is lum = (lummax-30)/((ilmax-2)). If ilmax < 15 then lummax = 220, otherwise lummax = 230. We need to check this in order to avoid overflow, which may occur. All luminance values within the certain range are considered as a luminance value from the middle of the range (luminance level). According to this luminance levels are: 30+lum/2, 30+1*lum+lum/2, … , 30+(ilmax-3)*lum+lum/2. Luminance values smaller than 30 are considered to be black color. Luminance values greater than lummax are considered to be white color.

Figure 3.4 shows how 3D HLS system is encoded into 1D histogram array (as explained previously).

	Index of histogram array
	Hue
	Saturation
	Luminance
	Description

	0
	any
	any
	<=30
	black

	1
	any
	any
	>=lummax
	white

	2
	any
	<20
	>30

<30+lum
	the darkest grey

	...
	…
	…
	…
	…

	ilmax-1
	any
	<20
	>=30+(ilmax-3)*lum

<30+(ilmax-2)*lum
	the lightest grey

	ilmax
	<=hue/2

>=240-hue/2
	>20

<20+1*sat
	>30

<30+lum
	the darkest red with the smallest sat.

	ilmax+1
	<=hue/2

>=240-hue/2
	>=20+1*sat

< 20+2*sat
	>30

<30+lum
	the darkest red with small sat.

	…
	…
	…
	…
	…

	ilmax+isat-2
	<=hue/2

>=240-hue/2
	>=20+(isat-3)*sat

< 20 +(isat-2)*sat
	>30

<30+lum
	the darkest red with the biggest sat.

	ilmax+1*
(isat-1)
	<=hue/2

>=240-hue/2
	>20

<20+1*sat
	>=30+lum

< 30+2*lum
	darker red with the smallest sat.

	ilmax+1*
(isat-1)+1
	<=hue/2

>=240-hue/2
	>=20+1*sat

< 20+2*sat
	>=30+lum

< 30+2*lum
	darker red with small sat.

	…
	…
	…
	…
	…

	ilmax+1*(isat-1)+isat-2
	<=hue/2

>=240-hue/2
	>=20+(isat-3)*sat

< 20 +(isat-2)*sat
	>=30+lum

< 30+2*lum
	darker red with the biggest sat.

	ilmax+2*
(isat-1)
	<=hue/2

>=240-hue/2
	>20

<20+1*sat
	>=30+2*lum

< 30+3*lum
	dark red with the smallest sat.

	Ilmax+2*(isat-1)+1
	<=hue/2

>=240-hue/2
	>=20+1*sat

< 20+2*sat
	>=30+2*lum

< 30+3*lum
	dark red with small sat.

	…
	…
	…
	…
	…

	Ilmax+(ilmax-3)*(isat-1)+1
	<=hue/2

>=240-hue/2
	>=20+1*sat

< 20+2*sat
	>=30+(ilmax-3)*lum

< 30+(ilmax-2)*lum
	the brightest red with small sat.

	…
	…
	…
	…
	…

	ilmax+(ilmax-3)*(isat-1)+ (isat-2)
	<=hue/2

>=240-hue/2
	>=20+(isat-3)*sat

< 20 +(isat-2)*sat
	>=30+(ilmax-3)*lum

< 30+(ilmax-2)*lum
	the brightest red with the biggest sat.

	ilmax+1*(ilmax-2)*(isat-1)
	> hue/2

< 3*hue/2
	>20

<20+1*sat
	>30

<30+lum
	the darkest orange-red with the smallest sat.

	ilmax+1*(ilmax-2)*(isat-1)+1
	> hue/2

< 3*hue/2
	>=20+1*sat

< 20+2*sat
	>30

<30+lum
	the darkest orange-red with small sat.

	…
	…
	…
	…
	…

	ilmax+1*(ilmax-2)*(isat-1) +(ilmax-3)* (isat-1) +(isat-2)
	> hue/2

< 3*hue/2
	>=20+(isat-3)*sat

< 20 +(isat-2)*sat
	>=30+(ilmax-3)*lum

< 30+(ilmax-2)*lum
	the brightest orange-red with the biggest sat.

	ilmax+2*(ilmax-2)*(isat-1)
	>=3*hue/2

< 5*hue/2
	>20

<20+1*sat
	>30

<30+lum
	the darkest red-orange with the smallest sat.

	ilmax+2*(ilmax-2)*(isat-1)+1
	>=3*hue/2

< 5*hue/2
	>=20+1*sat

< 20+2*sat
	>30

<30+lum
	the darkest red-orange with small sat.

	…
	…
	…
	…
	…

	ilmax+(ihmax-1)*(ilmax-2) *(isat-1)+1
	>=(2*ihmax-1)*hue/2

<(2*ihmax+1)*hue/2
	>=20+1*sat

< 20+2*sat
	>30

<30+lum
	the darkest magenta-red with small sat.

	…
	…
	…
	…
	…

	ilmax+(ihmax-1)*(ilmax-2)* (isat-1)+ (ilmax-3)* (isat-1)+ (isat-2)
	>=(2*ihmax-1)*hue/2

<(2*ihmax+1)*hue/2
	>=20+(isat-3)*sat

< 20 +(isat-2)*sat
	>=30+(ilmax-3)*lum

< 30+(ilmax-2)*lum
	the brightest magenta-red with the biggest sat.

Figure 4.4 Transformation of HLS colors into 1D histogram array

If we take a look at the histogram, we may see that some colors are so similar that we can hardly notice any difference between them. These pixels will be treated as if they belong to the same color. We conducted a lot of experiments in order to find threshold values for differences between hue, luminance and saturation levels of two similar colors. We found that the most appropriate values for the maximum differences are: delta_hue = 6, delta_lum =10 and delta_sat = 60. This is, of course, our opinion, so adjust these levels if needed. At the end of this step, we will only have colors which can be considered different.

4.3 Object extraction

In order to decrease time needed for processing matrix and classification of pixels into objects, we need to reduce the number of comparisons between pixels. This is done by dividing matrix into 5 regions as shown in Figure 3.5. This segmentation algorithm belongs to the group of region growing algorithms.

[image: image17.emf]P8 P8 P3

P5

P8

P4 P5

P3 P8

P4 P5

P3 P8

P6

The first column The last column

The last element in the last row

The last row The rest of the matrix

Figure 4.5 Dividing matrix into regions

We take each pixel and check if its neighbours have the same RGB colors as the current pixel. If so, then we check if the neighbour pixel already belongs to some object. If this is not the case, we assign it to the object to which the current pixel belongs. Otherwise, we have to do some merging. The object which contains fewer pixels is merged into larger one. Merging one object into another simply means to move all its pixels to the second object.

After this phase we usually get hundreds of small objects – at least the computer sees them that way. Often, these objects will have small variations of hue, luminance and saturation. For example, if we have human face in the picture, it will be divided into many small objects, with small deviations of (basically) same color. In order to unite them, we need to consider all these objects with small variations as the same object with only one color (one hue value, one luminance value, and one saturation value).

So, the next step is another merging iteration to create bigger objects that can be of some real use. That is done by detecting small mutually connected objects with similar color, saturation and luminance values. Maximum deviation is manually predefined – the bigger the threshold the more objects will be merged together. Criteria for similarity are shown in Figures 3.6, 3.7 and 3.8.

	Luminance value range
	Translated luminance
	Translated hue
	Translated
saturation
	Meaning

	<= 40
	0
	0
	240
	black color

	(40,70]
	55
	depends on hue values range
	depends on sat. values range
	very dark color

	(70,90]
	80
	depends on hue values range
	depends on sat. values range
	medium dark color

	(90,110]
	100
	depends on hue values range
	depends on sat. values range
	slightly dark color

	(110,150]
	130
	depends on hue values range
	depends on sat. values range
	common intensity color

	(150,190]
	170
	depends on hue values range
	depends on sat. values range
	very light color

	(190,230)
	210
	depends on hue values range
	depends on sat. values range
	medium light color

	>= 230
	240
	0
	240
	white color

Figure 4.6 Translation of luminance value ranges
	Hue value range
	Translated saturation
	Translated luminance
	Translated hue
	Meaning

	<= 30
	1
	depends on luminance values range
	0
	grey color

	(30,100]
	65
	depends on luminance values range
	depends on hue values range
	a lot of grey
in color

	(100,170]
	135
	depends on luminance values range
	depends on hue values range
	small amount of grey in color

	(170,240]
	205
	depends on luminance values range
	depends on hue values range
	almost pure color

Figure 4.7 Translation of saturation value ranges
	Hue value range
	Translated hue
	Translated luminance
	Translated saturation
	Meaning

	< 15 and >= 225
	0
	depends on luminance values range
	depends on saturation values range
	red color

	[15,25)
	20
	depends on luminance values range
	depends on saturation values range
	orange color

	[25,40)
	35
	depends on luminance values range
	depends on saturation values range
	yellow color

	[40,50)
	45
	depends on luminance values range
	depends on saturation values range
	yellow-green color

	[50,90)
	75
	depends on luminance values range
	depends on saturation values range
	green color

	[90,110)
	100
	depends on luminance values range
	depends on saturation values range
	blue-green color

	[110,125)
	120
	depends on luminance values range
	depends on saturation values range
	cyan color

	[125,140)
	130
	depends on luminance values range
	depends on saturation values range
	green-blue color

	[140,180)
	160
	depends on luminance values range
	depends on saturation values range
	blue color

	[180,190)
	185
	depends on luminance values range
	depends on saturation values range
	red-blue color

	[190,225)
	205
	depends on luminance values range
	depends on saturation values range
	magenta color

Figure 4.8 Translation of hue value ranges
After all mentioned steps, we finally have a list of significant objects on the painting. The problem is, from the machine's point of view, those are just amorphous groups of pixels of certain color. Obviously, we have to use other additional criteria after this process. Within our test, edge detection did not prove to be of much use. Other idea is to analyse textures of the detected objects (of course, on the original unaltered picture). Also the database of known objects can be used to calculate the similarity. But all that requires some semantic analysis, and also creation of some sort of neural network that can be trained to recognize more and more objects.

Semantic Web

5.1 Introduction to Semantic Web

The purpose of this chapter is to show new ideas and techniques that will enable better use of information existing on the World Wide Web, and also better communication between people and computers.

Semantic Web is a concept that enables better machine processing of
information on the Web, by structuring documents written for the Web in
such a way that they become understandable by machines. This can be used
for creating more complex applications (intelligent browsers, more
advanced Web agents), global databases with the data from the Web, reuse
of information, etc. This tutorial explains all above, using both the
basic theory and the appropriate examples.

Semantic modeling languages like the Resource Description Framework (RDF) and topic maps employ XML syntax to achieve this objective. New tools exploit cross domain vocabularies to automatically extract and relate the meta-information in a new context. Web Ontology languages like DAML+OIL extend RDF with richer modeling primitives and provide a technological basis to enable the Semantic Web. These concepts are explained through examples and case studies.

Finally, the logic languages for Semantic Web are described (which
build on the top of RDF and ontology languages). They, together with
digital signatures, enable a web of trust, which will have levels of trust
for its resources and for the rights of access, and will enable
generating proofs for the actions and resources on the Web.

The example which will flow through the book, trying to connect all the chapters, is an example in the music domain. Since music is a very large and popular area, and there are a lot of information on the web about it, including the possibility to download the music, makes it necessary to describe it semantically. The basic elements will be artists (with data such as name or title, URL, country of origin), albums (with the title, duration, genre, artist), songs (with title, genre, artist), genre (with the title, period, region, artists representatives), and all those are interconnected and relate to each other.

After defining the basic elements, we can make more complex ones, such as music collections, concerts, etc.

World Wide Web Today

The role of computers and Internet in the world today is enormous, with the tendency to grow. World Wide Web is easily used for presenting, exchanging and finding information, and for these reasons there is already a large number of information there.

[image: image18.emf]preferences

preferences

Information consumer

Information and Service Providers

SearchEngines(eg. Google),

Information Portals

Information request

Indexing, refences,

collections

Figure 5.1 Present of the WWW

Statistics say that in the end of the year 2002 five million people were using Internet, and three Billion pages were placed on the Web. This means a lot of users and a lot of information to be used.

On the other hand, a lot of problems appeared, especially in handling this large amount of information. Information from the data basis could not be presented well on the Web automatically, without altering the format, and the data placed on the Web could not be directly put into data bases. This is to be solved using XML. Next there was little possibility to check the validity of the information in XML. This is solved with XML Schema language. Information could not be related to each other, to the context, especially across different web applications. This is to be solved by RDF.

[image: image19.jpg]Trusted Web

Resources
DAML+OIL Shared Terminology
OWL machine <=machine 2010
XML Self Describing
RDF Documents 2000
HTTP Foundation of Web today 1990
HTML Human &->Machine
SGML Document Exchange Format 1985

Hy Time

Figure 5.2 Past and Future of the WWW

Another problem is how do we find the information on the Web? Usually by giving keyword(s) to the browser (i.e. Google), that returns pointers to web pages, containing the keyword you entered. This browser or a search engine sees everything on the Web only as strings of text, without any meanings (it only searches for substrings that correspond to the entered keywords). The only thing that a search engine can do more is to realize which strings are links to other pages, to follow the statistics of the number of visits or links to pages, and rank them accordingly, but still it has no understanding of the information.

This complicates even more if you need a more complex query, for example list of hotels that accept payment over the Internet, or if you need to act on the Web, to exchange information, to automatically extract relationships among information, like for companies to do business deals over the Internet, and all in areas of eBusiness, eBanking, eGovernment, eLearning.

Semantic Web Vision

So the idea of Semantic Web is to enable storing information in a way that they can later be found (the information, and not the pointers to web pages containing the information), and to enable realizing the relation among information (not only in one web application, but across many applications).

[image: image20.emf]Calendar

…

Preferences

…

User

Information and Service Provider

Ratings,

Signatures,

Certificates

„Trust“-Services

S+

Ratings,

Signatures,

Certificates

„Trust“-Services

S+

Agents

Request/Task

Communication, Negotiation, Planning,

Decisions, Proofs

Agents

Request/Task

Communication, Negotiation, Planning,

Decisions, Proofs

Agents

Request/Task

Communication, Negotiation, Planning,

Decisions, Proofs

Request/Task

Communication, Negotiation, Planning,

Decisions, Proofs

Communication, Negotiation, Planning,

Decisions, Proofs

Preferences

Semanticly

enriched

information

Interpretation

Interpretation

Interpretation

S+

S+

S+

S+

S+

Interpretation

S+

Semanticly

enriched

information

Interpretation

Interpretation

Interpretation

S+

S+

S+

S+

S+

Interpretation

S+

Figure 5.3 Semantic Web vision

After a large number of information is placed on the Web in this way, then there will be a possibility to write intelligent web agents which will find and relate information on the web so that they can return the answer to the user. Agents will need reasoning in order to decide how much is certain information relevant to the user query, how much is this information outdated, what are its source and credibility and the level of trust for this information. So information on the web need to be put in the space time context, and logic need to be introduced, so that generating of proofs can be possible.

In order to help introduce semantics and meaning into the Web, many techniques and frameworks are being developed to help computers understand information on the Internet. The Figure 5.3 shows the vision of the relation between users and the Internet.

Semantic Web Definition

A Definition of the Semantic Web - Semantic Web is an extension of the current web in which information is given well-defined meaning, better enabling computers and people to work in cooperation” is given by Tim Berners-Lee, James Hendler, Ora Lassila, The Semantic Web, in the Scientific American, May 2001.

Tim Berners-Lee, also the inventor of HTML and WWW, is one of those who first thought of the idea of Semantic Web, which is to help computers and people work cooperatively, effectively, scalable, with trust. He sees the future Web as “One big formula rather than one big book”.

Why do we need Semantic Web?

· To enable more advanced automated processing on the Web (machines can “understand” the content), Intelligent browsers to help you find what you are looking for, and also Web agents which you can program to observe, act and react on the Web as a community of such agents and services.

· To use the large amount of information on the Web more effectively

· To derive new information from existing information (reasoning) - Virtual global database, everyone on the Web could make their own databases with the source being a large number of information available from the internet.

· Advanced applications and services become possible, e.g. in e-Business, e-Government, e-Learning.

Here are some of the examples already proposed:

Context-awareness would be linking on the WWW based on the meaning of the information elements, you could highlight certain word or set of words and get intelligent linking to other Web pages, for example you highlight a word Tahiti, and get a possibility to see a map of the region, some information on the inhabitants, climate, history, book a hotel there, etc.

Annotations - you could add comments to the information on the Web, and these comments can be shown to other visitors, so you could say you do not agree with the information given on a certain page, or you agree with some ideas on a page.

Personalization - you can create your own database of information from the Web; make it your personal Web.

How can we achieve this? By using semantic metadata – data about data, that contain the information about a document (these data would actually state for example that Mark Twain is a writer or that Greece is a country). Next step is defining vocabularies of these metadata (with RDF-Schema, later explained) to enable general understanding (machine understanding). One of the platforms used is RDF XML, RDF with the XML syntax, as will be explained later in the book. Beyond that web ontology languages offer a possibility to automatically extract and relate the meta information in a new context.

All this is shown on the Figure 1.4, which explains the semantic Web architecture, where things build on top of each other, so that we do not need to reinvent new techniques but can develop the old ones in a different manner.

The most bottom layer or the foundation layer is URIs, or the ability to name anything on the web with a unique name and to publish this naming on the web (namespaces). Next layer is XML or information structuring (and data types). On top of that is relating information or semantics (RDF) and vocabularies which collect the semantic (Schema). On top of that is building the systems of knowledge (ontologies) by further restricting and relating information. After comes logic which enables generating proof. Together with digital signatures this enables web of trust.

The building blocks of this model are URIs, Uniform resource Identifiers. This is a unique name for everything. For example, http://library.com/ulix is a unique name for a resource Ulix. Using URIs and meta data we can describe documents in XML. We can use XML (Extensible Markup Language) and RDF (Resource Description Framework) syntax for defining data and metadata.

[image: image21.png]Data

Rules Trust

Data Proof

Logic

Ontology vocabulary

RDF + rdfschema

Digital Signature

XML + NS + xmlschema

Figure 5.4 Semantic Web Layer Model

After the meta data is defined, the goal is to develop organized vocabularies of metadata (ontologies) to enable general machine understanding. Web ontology languages and mechanisms that automatically extract and relate the meta information are the tools to generate such vocabularies.

The Principle Ideas behind Semantic Web

Everything Identifiable is on Semantic Web: This means that anything can be identified with an URI, and not only objects existing solely on the Internet. For example we can give URIs to text, music, pictures, and other non digital objects.

The principle of least power: The less rules, the better. There is no censorship, so anything can be placed on the Web. This gives a lot of freedom to people putting information on the web, and so there are possibilities that can not be found otherwise. The drawback of this is the inconsistency of information on the Web. Lack of control enables the existence of opposite information about the same thing.

Evolution: To enable combining independently designed modules. Evolution means building the new techniques on top of old ones, without altering them, and using such description techniques that can develop with the development of human understanding. Partial understanding and transformability means that when designing the future of web we need to account for the fact that not everything can be understood there, that perhaps the chain of linking information may break and that the computer will not understand something.com/mypage and needs to cope with this. Transformability means that the information is represented in different ways and that there must be a way to transform information from one platform to another.

Minimalist Design: The point is to make applications as simple as possible. Simplicity helps future evolution of Semantic Web.

Inference: Deriving new data from the existing ones; merging data repositories gives new information. Interference allows the creation of more powerful applications (intelligent agents) – unfortunately, it can be achieved completely only when the semantics is defined formally in a language e.g. "First Order Predicate Logic“ languages.

Repurpose of data: The data you publish can be used by others for many different purposes.

Anyone can create a language: By publishing a RDF that describes a set of URIs, and everyone with a generic RDF processor can use this language. This helps the expansion and evolution of Semantic Web.

5.2 XML Technologies for the Semantic Web

Until recently most of the data on the Web were placed using HTML. But a lot of problems appeared in handling this large amount of information. The name of the problem was the format crisis – information from the data bases could not be presented on the Web automatically, without altering the format, and the data placed on the Web could not be directly put into data bases. For these reasons, it was difficult to develop Business, Medicine, and Education over the internet, and it was difficult to exchange the information between applications.

XML (eXtensible Markup Language) is a text-based meta language format data exchange. It provides a pathway to transfer data easily between dissimilar applications and servers. A short introduction to XML would say that XML is a format for describing information so that they can be transferred among different applications on the Web. In the same time it can display information, and store information in a database.

 XML gives the possibility for everyone to create meta data. But in order to process these meta data, computer needs some rules on which meta data is correct. These rules are given in accompanying documents, DTD or XML Schema. Also there is a possibility to query XML documents, by using XML Query language.

Markup elements, or nodes in the tree structure, begin with start tag <element_name> and end with end tag </element_name> and they identify metadata or data about data. Elements can be simple and complex, and complex elements can have attributes.

URI - Uniform resource Identifier is a way of unique naming for everything. For example, http://library.com/ulix is a unique name for a resource Ulix. Using URIs and meta data we can describe documents in XML. The difference between URLs and URIs is that URL (Uniform resource Location) is an actual address on the WWW for a certain page or a part of the web page, and URI is a name for a concept that does not even need to be on the Web (it can be a book or a person), it is only named on the Web.

Namespaces are the places on the Web where we give concepts unique names. In this example http://library.com/ is a namespace.

[image: image22.emf]c c c

b d

a

<?xml

version="1.0"?>

<a>

<bid="x1">

<c>David</c>

<c>Marie</c>

<d/>

<bid="x2">

<c>John</c>

File Format

(Instance)

TreeStructure

Instance

David Marie John

id=x1 id=x2

b

Schema

(DocumentType

Definition, DTD)

a

b d

*

c

id

*

Figure 5.5 Overall structure of an XML document

XML documents have binary tree structure, where elements have a parent child relationship. Elements in the XML documents (represented with the markup) are nodes in the tree structure.

Before we explain the syntax we will write a simple example. We will describe a song with the title Gipsy song, and the performer Vlatko Stefanovski. The genre of the song is ETHNO and it can be downloaded. The top element is <song>, and all the other elements must be written between the start tag and the end tag <song> </song>. Children elements of the song element are title and artist. Song also has two attributes genre, with the value “ETHNO”, and download, with the value “YES”. Element comments is empty so it is written <comments/>.

<?xml version="1.0" encoding="UTF-8"?>

<song>
 <title>Gipsy song</title>
 <artist>Vlatko Stefanovski</artist>
 <genre class=”ETHNO” />
 <download class=“YES”/>
 <comments/>
</song>

This document has no DTD or Schema assigned to it, so there is no possibility of checking if its validity. In this way it does not say much. Later we will see how to assign DTD or Schema to XML document and how to write them.

After the initial comments and the processing instructions, there is prologue of the document. It contains a DTD declaration and XML declaration.

XML declaration specifies the version of XML used, and tells witch DTDs to process with the document:

· ALL – process all DTDs

· NONE – process no DTDs

· INTERNAL – process only DTDs found in the document

For example:

<?XML VERSION=”1.0” RMD= “ALL” ?>

If there is no DTD in use, the document should start with a Standalone Document Declaration (SDD):
<?XML VERSION="1.0" STANDALONE=“YES"?>

Elements are defined with the start tag and an end tag and the content in between:

<element_name>content</element_name>

content can further have elements:

<complex_element_name>
 <element_name>content</element_name>

</complex_element_name>

For example:

<a>

 Something

If there is nothing between start and end tag, or there is only empty tag with closing slash (<E/>), this is empty element.

Complex elements can carry attributes. The syntax for the attributes is as follows:

<ATT_NAME class=”ATT_TYPE”/>

Keyword is class and the type of the attribute is written between quotes. In the previous example it was:

<genre class=”ETHNO” />

XML documents must be well formed:

· Every document must have a root element (like the song element, which is the parent of all other elements)

· Every start tag must have a corresponding end tag (<song></song>)

· Interleaved tags may not exist: <a> (the proper way is <a> or <a>)

XML related provides a sound technological basis employed by e.g. the XML e-business frameworks like RosettaNet or ebXML. It is only necessary for the creators of applications in the same domain to agree on specific DTDs or XML schemata for the predominant documents. Then it is easy to exchange documents written in XML, such as tenders, specifications, contracts, etc.

The importance of B2B applications is stated enough in numbers. Forrester Research estimated that B2B e-commerce revenue in the United States will increase from $109 billion in 1999 to $2.7 trillion by 2004. (http://java.sun.com/xml/b2b.html).

In web applications, Microsoft .NET platform uses XML as basic framework for Web Services. XML is supported by Java (Java 2 Platform).

XML is supported by IT companies like IBM, Sun Microsystems, Oracle, Microsoft. XML document can be delivered over the HTTP protocol easily. Tags can easily be changed, so elements are flexible. There is a possibility to check documents against a set of rules, and with XML Schema to add data types. Documents can be published in multiple formats. XML independent of the vendors.

HTML, as the most used workspace on the Internet, is oriented mostly on the display of the information, so it can be difficult to excange the information, for example ordering.

XML and HTML both have the common framework, in meta languages, so they both use metadata. But the difference starts in the type of documents, and in the structure. XML has structured documents and is oriented on the exchange of information, and HTML has more text documents and is oriented on presenting information.

XML Instances

XML Instance is an XML document that holds the actual information and is usually described by DTD or XML Schema. Its properties are the values of the elements, or the actual information. Now we will show a few examples of instances, which together make a music domain example that will later be restricted with DTD and Schema.

We have defined the element song which has its artist, title, genre, and downloadable options. Now we will define a list of artists with their titles, URLs and countries of origin, so that later we can associate to them from other documents.

<?xml version="1.0" encoding="UTF-8"?>

<Artists>

<Artist>

<Title>Vlatko Stefanovski</Title>

<URL>http://www.stefanovski.com</URL>

<Country>Macedonia</Country>

</Artist>

<Artist>

<Title>Ella Fitzgerald</Title>

<URL>http://www.fitzgerald.com</URL>

<Country>USA</Country>

</Artist>

<Artist>

<Title>Louis Armstrong</Title>

<URL>http://www.armstrong.com</URL>

<Country>USA</Country>

</Artist>

</Artists>

In Entity-Relationship model Artists would look like the following:

[image: image23.jpg]Artists
(rttD.

Tite
URL
Country

Figure 5.6 Table Artists
Next we put some music albums information in XML,

<?xml version="1.0" encoding="UTF-8"?>

<Albums>

<Album>

<Title>A Star For Ever</Title>

<Year>1982</Year>

<Description/>

</Album>

<Album>

<Title>Life</Title>

<Year>1996</Year>

<Description/>

</Album>

<Album>

<Title>Reggae Fever</Title>

<Year>1994</Year>

<Description/>

</Album>

</Albums>

In Entity-Relationship model Albums would look like the following:

[image: image24.jpg]Albums
AbumiD
Tite
1ssued_Year
escription

Figure 5.7 Table Albums
Now if we wanted to connect Album and Artist (to state that a certain album is done by one or more artists) we would need a relationship between them. Like in the entity relation model, relationships can be binary and n-nary. Relationships can be represented as a separate element that, or as an attribute of the element later referenced (also as an attribute) in the other element.

Binary relation is a relation between two entities, and it can be 1:1 (one-to-one), 1:M (one-to-many), and N:M (many-to-many). For example, a binary relation between Artists and Albums would be many to many since more than one artist can make an album, and one artist can make more than one album.

N-ary relations are relationships among more than two entities. Such a relationship would be among the song, album and artist element, where we would model the song belonging to a certain album, and being by a certain artist, and the album would also be connected with the artist (possibly more artists could make one album).

For example, if we have entitites person and IDCard, each person can have only one ID card, and ID card can belong to only one person. This is a 1:1 relationship between entitites person and ID card.

In Entity Relation Model it would be modelled as the foreign key connection between IDCard and Persons tables.

[image: image25.jpg]1DCard *

lo—————e{ persons *

g[ipCardD
IssueDate
Lssuedty
vaidunti

@|personiD
ame
dress

Figure 5.8 IDCard-Persons relationship

In XML this can simply be modelled by referencing person in the IDcard by PersonID="1" attribute and IDcard in the person element by IDCArdID="1" attribute.

<Person id="p1" IDCArdID="c1">

 <Name>John Johnson</Name>

 <Address>Abbey Road 5</Address>

</Person>

<IDCard id="c1" PersonID="p1">

 <IssueDate>01/05/99</IssueDAte>

 <IssuedBy>Authorities</IssuedBy>

 <ValidUntil>01/05/2009</ValidUntil>

</IDCard>

For example school can have many students, but in a period of time student can belong only to one class, and class can have many students. This is a 1:M relationship.

In XML there are several ways to model this. One way is to simply have Student element as a child of the School element.

<School>

 <Name>I Gymnasium</Name>

 <Student>Mary Adams</Student>

 <Student>John Johnson</Student>

</School>

Another way is referencing, like in the following example.

<School ID=”s1”>

 <Name>I Gymnasium</Name>

</School>

<Student SchoolID=”s1”>Mary Adams</Student>

<Student SchoolID=”s1”>John Johnson</Student>

The important thing to consider when choosing the implementation method for relationships in XML is the redundance. How can the data storing and querying be optimized in the best way.

M:N relationshiop, like the one with the Artists and the Album, connects two entitites in a way that each entity can be related to the other more than once. Artist can have more Albums, and Album can have more Artists.

In the entity relation model this relation would be modelled as the new entity that is connected with the 1:N relation to the both other entities.

We can make a new entity Has.

<Albums>

 <Album ID="a108">

 <Title>A Star For Ever</Title>

 <Year>1982</Year>

 <Description/>

 </Album>

 <Album ID="a109">

 <Title>Reggae Fever</Title>

 <Year>1994</Year>

 <Description/>

 </Album>

</Albums>

<Artists>

 <Artist ID="bm45">

 <Title>Bob Marley</Title>

 <URL>http://www.marley.com</URL>

 <Country>Jamaica</Country>

 </Artist>

 <Artist ID="a34">

 <Title>Louis Armstrong</Title>

 <URL>http://www.armstrong.com</URL>

 <Country>USA</Country>

 </Artist>

</Artists>

<Has AlbumID="a108" ArtistID="a34">

</Has>

Has element shows to connection between album and artist. In the above example it connects album “A Star For Ever” (with the ID=108) with the artist Louis Armstrong (with the ID=34a).

Another way is referencing in the same element:

<Albums>

 <Album ID=="a108">

 <Title>A Star For Ever</Title>

 <Artist ArtistID="a34"/>

 <Year>1982</Year>

 <Description/>

 </Album>

 <Album ID="a109">

 <Title>Reggae Fever</Title>

 <Artist ArtistID="bm45"/>

 <Year>1994</Year>

 <Description/>

 </Album>

</Albums>

<Artists>

 <Artist ID="bm45">

 <Title>Bob Marley</Title>

 <Album AlbumID="a109"/>

 <URL>http://www.marley.com</URL>

 <Country>Jamaica</Country>

 </Artist>

 <Artist ID="a34">

 <Title>Louis Armstrong</Title>

 <Album albumID="a108"/>

 <URL>http://www.armstrong.com</URL>

 <Country>USA</Country>

 </Artist>

</Artists>

XML Document Type Definition (DTD)

Document Type Definition or DTD defines the markup or the tags for the elements in an XML document that will later use this DTD. More specifically, it defines which elements and attributes can be used in the XML document and how.

A DTD is a set of definitions for markup in XML documents. It is a formal description of elements, attributes and entities in XML documents. You can create your own DTD. It can be in a separate or the same file as the XML document it refers to.

DTD and XML are two different but complementary sides of the same document.

The purpose of DTDs is to help us check the validity of the XML documents we write. In DTD we specify certain structures, and later when writing XML documents we must stick to those structures, otherwise the parser will not be able to parse the XML document.

<DOCTYPE DTD_name SYSTEM DTD_name.dtd>

The song.xml example from the previous section will be checked here against a DTD Music.dtd which holds the processing rules. In this example:

 <DOCTYPE Music SYSTEM Music.dtd>

If you put a DTD in XML document, then it is internal, and you can use it only for this document. If you put a DTD in a separate file, than you can use it for any XML document, as long as you refer to it.

DTD Element Declarations (1):

<!ELEMENT elementname (contentmodel)>

Element Content

<!ELEMENT example (a)>

Text and Mixed content

<!ELEMENT example (#PCDATA)>

<!ELEMENT example (#PCDATA | a)*>

Empty Element

<!ELEMENT example EMPTY>

Element with arbitrary content

<!ELEMENT example ANY>

Here we see how to write DTDs. With the keyword !ELEMENT we declare elementname that will be an element in the XML document. We can partially declare the type of this element, or its content. In DTDs there is no possibility to have types, but elements can have textual content (#PCDATA), complex content (with other elements as children), mixed content (#PCDATA | a). There can also be elements with mixed content, or empty elements that can have no content.

DTD Element Declarations (2):

Sequence

<!ELEMENT example (a, b)>

Alternative

<!ELEMENT example (a | b)>

Optional (Zero or Once)

<!ELEMENT example (a)?>

Optional and repeatable

<!ELEMENT example (a)*>

Required and repeatable

<!ELEMENT example (a)+>

Parentheses can be used for grouping content models.

Here we can define something like complex elements, where the new element is a sequence or an alternative of several other elements, or a repetition of one element - constrains of the number of occurrences for an element (element can be optional, or required, or it can repeat).

DTD Attribute Declaration

<!ATTLIST Elementname
 Attributename Type Restriction
 Attributename Type Restriction

 …
>

Possible Restrictions:

Required Attribute:

#REQUIRED

Optional Attribute:

#IMPLIED

Fixed Attribute:

#FIXED "value"

Value for enumeration types
"value"

Elements can have attributes, and we declare them as stated above. First we use the keyword !ATTLIST that says that after the Elementname (the name of the element for witch we are giving the attributes) we will give a list of attributes.

For each attribute we can give restrictions of its values. We can say that the attribute must appear next to the element and than it is #REQUIRED, and that it does not need to appear, then it is #IMPLIED, it can be of only one value - #FIXED value, or it can be an enumeration of certain values that we state in the DTD and than it can only have one of these values.

DTD Attributes: Types

CDATA

Character String

<!ATTLIST example HREF
CDATA #REQUIRED>

Enumeration type

<!ATTLIST example selection (yes | no | maybe) "yes">

ID, IDREF

ID serves as a unique key within a document

IDREF refers to a key

Referential integrity is checked by parser

<!ATTLIST example
 indentity
ID #IMPLIED
 reference
IDREF #IMPLIED>

Above we can see what attributes can be. They can be strings of text, and we use the keyword CDDATA for them. They can be enumeration of stated values, as in the example above (yes, no or maybe). Or they can have a unique key ID, which we can later refer to with IDREF. This is used for referencing.

What follows is an example of a DTD, in the music domain. Here we specify certain rules that can later be used in the XML document song.xml. It is Music.dtd, the collection of music songs where we can determine the title of the song, the artist (performer or author of the song), name of the album, the type of song (classical, rock, pop, folk), download possibilities (yes, no) comment…

Music.dtd:

<!ELEMENT song (title, artist, album?, type, format?, download, comments?)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT artist (#PCDATA)>

<!ELEMENT type EMPTY>

<!ATTLIST genre
 class (CLASSICAL | ROCK | POP | RAP |

JAZZ | TECHNO | ETHNO) #REQUIRED>

<!ELEMENT download EMPTY>

<!ATTLIST download

 class (YES | NO) "YES">

<!ELEMENT comments (#PCDATA)>

Here, song is the parent element, and title, artist, album, type, format, download, and comments are child elements. This means that in a XML document all the child elements must be defined inside the parent element. <!ELEMENT type EMPTY> means that attributes describe content. So next we have a list of attributes. Attribute genre is of the enumeration type, so here we give its possible values, separated with a line CLASSICAL | ROCK | POP | RAP | JAZZ | TECHNO | ETHNO, and it is required. We also have another enumeration type, it is download, and it can be yes or no. Both type and download are attributes of the element song.

The artist element would also need a corresponding DTD. So we would add a line in the Artists.xml
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE Artisits SYSTEM "C:\artist.dtd">

<Artisits>

 <Artist>

 <Title>Vlatko Stefanovski</Title>

 <URL>http://www.stefanovski.com</URL>

 <Country>Macedonia</Country>

 </Artist>

<Artist>

 <Title>Ella Fitzgerald</Title>

 <URL>http://www.fitzgerald.com</URL>

 <Country>USA</Country>

</Artist>

<Artist>

 <Title>Louis Armstrong</Title>

 <URL>http://www.armstrong.com</URL>

 <Country>USA</Country>

 </Artist>

</Artists>

Artist.dtd explains to the parser that the element Artists has one or more Artist element as a child, Artist element has children Title, URL, Country, as a sequence in this order, and each appears only once, and they are all text elements:

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT Artisits (artist+)>

<!ELEMENT Artist (Title, URL, Country)>

<!ELEMENT Title (#PCDATA)>

<!ELEMENT URL (#PCDATA)>

<!ELEMENT Country (#PCDATA)>
Again to use example with the connection of school and students, now follows the DTD for such document

Full XML would be:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE RelationExample SYSTEM
 "C:\relationexample.dtd">

<RelationExample>

 <School id="s1">

 <Name>I Gymnasium</Name>

 </School>

 <Student SchoolID="s1">Mary Adams</Student>

 <Student SchoolID="s1">John Johnson</Student>

</RelationExample>

relationexample.dtd:

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT RelationExample (School, Student+)>

<!ELEMENT School (Name)>

<!ATTLIST School

 id ID #REQUIRED>

<!ELEMENT Student (#PCDATA)>

<!ATTLIST Student

 SchoolID IDREF #REQUIRED>

Here the ID and IDREF attribute types are used.

XML Linking

HREF, as a one way linking from HTML is still used.

[image: image26.emf]a href=“http://someplace.org/page.html”

H Link

Figure 5.9 HTML Linking

In the Figure 5.9 we see that in HTML we can link to a certain part of the document, using the anchor (#) element, but we need to define it previously in the document we are linking to.

Also there is a new way of linking that has multi-way and bi-directional links, and linking to a part of text, not only to one point (like HREF).

We can simply link from one point to another, and we can link from one point to several points, or link groups – from several points to another several points.

XPath is a W3C standard that enables addressing parts of an XML document (elements, attributes, etc.). It is used later in XML linking (XPointer), XML querying (XQuery), and XSL Transformations (XSLT) because it gives a very good idea how to select certain parts of a document. XPath follows XML tree structure, so all the information are seen as nodes (element nodes, attribute nodes, text nodes), and they are computed to their string values.

To write expressions in XPath means to write local paths which select a node in the XML document.

Example 1: Select the title elements of the song elements of the catalog element and all the artist elements in the document:

/catalog/song/title | //artist

Example 2: Select all the song elements of the catalog element that have a download element with a value of yes:

/catalog/song[download=yes]/title

Operator / selects the child element of the element before /, named as stated after /. Operator // selects any element in the document with the name of the element stated after //. Operator | selects several paths. Square brackets [] are used to further distinguish element – to enable specifying values of elements.

Use * to select unknown XML elements: /catalog/*/artist
Use @attribute_name to specify an attribute:

//song[@type=‘classical']

Here is a more complex example, based on the previous Artists.xml:

<?xml version="1.0" encoding="UTF-8"?>

<Artists>

 <Artist>

 <Title>Vlatko Stefanovski</Title>

 <URL>http://www.stefanovski.com</URL>

 <Country>Macedonia</Country>

 </Artist>

 <Artist>

 <Title>Ella Fitzgerald</Title>

 <URL>http://www.fitzgerald.com</URL>

 <Country>USA</Country>

 </Artist>

 <Artist>

 <Title>Louis Armstrong</Title>

 <URL>http://www.armstrong.com</URL>

 <Country>USA</Country>

 </Artist>

</Artists>

The result of the following XPath expression:

<html>

<body>

<script type="text/vbscript">

set xmlDoc=CreateObject("Microsoft.XMLDOM")

xmlDoc.async="false"

xmlDoc.load("Artists.xml")

path="/Artists/Artist/[Country=USA]/Title/text()"

set nodes=xmlDoc.selectNodes(path)

for each x in nodes

 document.write("<xmp>")

 document.write(x.xml)

 document.write("</xmp>")

next

</script>

</body>

</html>

would be:

Ella Fitzgerald

Louis Armstrong

XPath expressions are a possibility to choose certain elements that have certain characteristics. The expressions can be logical, arithmetical.

Example 3: Select the songs, child elements of the element catalog, that have their duration less then 5:

/catalog/song[duration<5]

XPath functions are some predefined functions that make it possible to conduct more complex operation, like to count number of certain elements, to find the last element, to sum elements, etc. Some of the mostly used functions are count(), last(), last(); string functions: concat(), contains(), string(), substring(); number functions – round(), number(), sum(); boolean functions – false(), true(), not().

Example 4: Select the last song in the catalog:

/catalog/song[last()]

Example 5: Select nodes from the XML document (IE):

xmlDoc.selectNodes("/catalog/song/title/text()")

Xpointer locates portions of other XML documents (elements, attributes…), without the need to place anchors inside those documents (as in HTML). It is more robust to the changes in the target document. Xpointer is a combination of URL and Xpath.

Example 6: point to the fist title of the song in the document http://www.music.org/first.xml. We will fist write the name of the document, than #xpointer and than the xpath expression for finding the title element of the song in a document.

http://www.music.org/first.xml/#xpointer
 (//song/title[1])

In previous example http://www.music.org/first.xml is the URL of the document, and (//song/title[1]) is an XPath expression.

Xlink is a way of multiway linking. For that purpose it uses xpointer.

[image: image27.emf]<environment xmlns:xlink="http://www.w3.org/1999/xlink"

xlink:type="extended">

arc

arc

artist

inspiration period

cezane.xml

modigliani.xml

paris.xml

</environment>

<artist xlink:type="locator“ xlink:role="artist"xlink:href="modigliani.xml"/>

<influence xlink:type="locator" xlink:label="inspiration“ xlink:href="cezanne.xml"/>

<history xlink:type="locator" xlink:label="period" xlink:href="paris.xml"/>

<bind xlink:type="arc" xlink:from="artist" xlink:to="inspiration"/>

Figure 5.10 Example of an extended link

In the Figure 5.10 we see a more concrete example. The idea is to link the artist with his influences in the way of other artists and art periods. Environment is the place where all the links and their connections are. We have two types of xlinks, locator that gives the name of the element that is being linked to, and arc, which makes the connection between locators that need to be linked to each other. Here we have the artist Modigliani, and his locator is modigliani.xml, and its role is artist. His influence is Cezanne, so we make another xlink locator, called inspiration with the name cezanne.xml. We make another locator for the period in history that made influence on Modigliani, and this document is paris.xml. We make the connection between the artist and his inspiration artist and the artist and the history period by using arcs.

XML Schema

XML Schema defines a class of XML documents. It defines (explains) the datatypes, elements, and attributes; defines and catalogues vocabularies for classes of XML documents. The document described by an XML schema can be called an instance (parallel to OOP). The schema language extends the capabilities of (DTDs), firstly with data types.

Data types are important because they enable more strict document checking, making patterns, and give documents more sense.

Limitations of DTDs are following:

<!ELEMENT song (title, artist, album?, type, format?, download, comments?)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT artist (#PCDATA)>

<!ELEMENT type EMPTY>

<!ATTLIST type class (CLASSICAL | ROCK | POP | RAP
 | JAZZ | TECHNO | ETHNO) #REQUIRED>

<!ELEMENT download EMPTY>

<!ATTLIST download class (YES | NO) "YES">

<!ELEMENT comments (#PCDATA)>

· The syntax of DTDs is not XML syntax so it is difficult sometimes to relate between DTD an XML.

· There is practically no reuse of content models, in other words we can not use something already written and just expand it or change it for our needs. We have to write new DTD every time. This does not help the evolution principle.

· Data types do not exist; essentially there is only "String” type, and parent child relationships among elements.

· DTDs only allow for global elements and local attributes.

On the other hand usage of XML schemes has following advantages:

· XML schema has XML syntax, so there is no need to learn new language, the XML parsers can parse the schema, and XSLT can display it.

· Schemata are reusable, so data types can be expanded, related to other data types, and schemata can be extended.

· XML Schema defines and declares elements and their attributes in XML, their constraints and occurrences and data types.

· XML Schema uses namespaces which is another important quality.

An XML Schema is comprised of a set of schema components. There are three groups of components:

Primary components are Simple type definitions, Complex type definitions, Attribute declarations, Element declarations, and they are most important.

 Secondary components are Attribute group definitions, Identity-constraint definitions, Model group definitions, Notation declarations.

“Helper” components are Annotations, Model groups, Particles, Wildcards, Attribute Uses, and they are not the basic, but only components for more complex schemas.

Example: here we will follow the example of song.xml, but will try to expand the DTD and make a schema for song.

<xsd:complexType name=“song" >

 <xsd:sequence>

 <xsd:element name=“title" type="xsd:string"/>

<xsd:element name=“artist" type="xsd:string"/>

</xsd:sequence>

<xsd:attribute name=“length" type="xsd:duration"/>

</xsd:complexType>

(xsd is used to denote XML Schema namespace.)

Song is a complex type, and it is comprised of a sequence of elements title and artist. This means that in the XML document we must have title and artist as children of the song element, and they must be in that order. Here they are only declared. We also have an attribute length.

Unlike DTD, XML Schema has types, and there are simple types and complex types. Complex types (consists of simple or complex element types, declared as a group of elements, and attributes). Schema element, is a complex type, and all elements in XML Schema are descendents of schema element.

· Content model in XML Schema defines groups (group) of elements. The choice group element. The sequence group element – children appear in a sequence one after the other. All group element – elements in the group may appear once or not at all, and they may appear in any order. We can also create a named attribute group containing all the attributes of an item element.

Complex types allow elements in their content and may carry attributes. They are defined using the complextype element. They usually contain a set of element declarations, element references, and attribute declarations.

Example: Complex type Name that consists of simple string types first and last.

<xsd:complexType name=“NameType”>
 <xsd:element name=“FirstName” type=“xsd:string”/>

 <xsd:element name=“MiddleName” type=“xsd:string”/>

 <xsd:element name=“LastName” type=“xsd:string”/>
 </xsd:complexType>

This type can later be used:

<xsd:complexType name=“PersonType”>
 <xsd:element name=“FullName” type=“NameType”/>
 <xsd:element name=“ParentName” type=“NameType/>
<xsd:complexType>

Simple types cannot have element content and cannot carry attributes. They are defined with simpletype element. They can be string, int, unsignedInt, long, byte, token, decimal, float double, time, duration, gMonth, name language, ID, ENTITY, NOTATION, NMTOKEN are built-in types. New simple elements can be created by restriction from the built ins (a range of values) with the facets (like pattern, enumeration).

Example: deriving a new type named title from the string type.

<xs:simpleType name=“title">

 <xs:restriction base="xs:string"/>

</xs:simpleType>

Example: deriving a new simple type by enumeration:

<xs:simpleType name="BasicColours">

 <xs:restriction base="string">

 <enumeration value="Red"/>

 <enumeration value="Green"/>

 <enumeration value="Blue"/>

 </xs:restriction>

</xs:simpleType>

In previous example, possible values for BasicColours are Red, Green, and Blue.

Example: deriving a new simple type as a pattern:

<xs:element name="ImageName">

 <xs:simpleType>

 <xs:restriction base="xsd:string">

 <xs:pattern value=".*\.(gif|jpg)"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

Here we specify that the ImageName element needs to finish with .gif or .jpg.

List types are made by derivation from existing atomic types (they can have facets length, minlength, enumeration…). Union types are also simple types.

Global element or attribute is defined as a child of schema element. They can be referenced later in the schemas by using the “ref” attribute.

Example:

<xsd:element ref="comment" minOccurs="0"/>

In XML Schema occurance constraints are defined with minOccurs and maxOccurs keywords. In the above example minOccurs="0" is an occurrence constraint and it tells that comment can appear minimum 0 times.

Global declarations cannot contain the ref attribute, they must use the type attribute, and be followed by an anonymous type

 HYPERLINK "http://www.w3.org/TR/xmlschema-0/" \l "InlineTypDefn" \t "_blank" definition. They can not have constraints.

Local elements and attributes are defined within the context of some (complex) type definition.

Elements (and attributes) with the same name may have different type in different contexts.

Example.xsd: This is an example of a complete schema related to the song example.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:annotation>

 <xs:documentation xml:lang="en">

 Music album schema

 </xsd:documentation>

</xs:annotation>

<xs:element name="song">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="title" type="xs:string"/>

 <xs:element name="artist" type="xs:string"/>

 </xs:sequence>

 <xs:attribute name="genre" type="xs:string"
 use="required"/>

 <xs:attribute name="download" type="xs:string"

 use="required"/>

 </xs:complexType>

</xs:element>

</xs:schema>

Element annotation can be put at the beginning of a schema and it gives some additional information on the schema. Documentation and appInfo are sub elements of annotation. Documentation element holds the schema description and copyright information (readable by humans), and also the specification of the language; appInfo can be used to provide information for tools, style sheets and other applications (readable by machines).

Example: annotation for the collection of music songs in English language.

<xsd:annotation>

 <xsd:documentation xml:lang="en">

 Collection of music songs

 </xsd:documentation>
</xsd:annotation>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"> says that prefix xsd will be used for the ://www.w3.org/2001/XMLSchema namespace. Later all elements and attributes of the schema are written with this prefix, denoting the namespace.

Later we define the complex element song, with the child string elements title and artist as a sequence, and then two attributes genre and download. So in this example there is not much difference to DTD, except the XML syntax, so we will now expand the example a little bit.

We can make an artist element, with the title, URL, and Country. Genre can also have elements TimePeriod, MainRegion, Representatives, and become an element rather than an attribute, and we can introduce attribute duration with a simple duration type.

We can define datatypes artist and genre in a special namespace art.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace=

 "http://www.example.com/music"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:art="http://www.example.com/music">

<xs:element name="artist">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Title" type="xs:string"/>

 <xs:element name="URL" type="xs:anyURI"

 minOccurs="0"/>

<xs:element name="Country" type="xs:string"

 minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

<xs:element name="genre">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Title" type="xs:string"/>

<xs:element name="Period">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="From" type="xs:gYear"/>

 <xs:element name="To" type="xs:gYear"

 minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

<xs:element name="Region" type="xs:string"/>

<xs:element name="Representatives"

 maxOccurs="unbounded" type="art:Artist"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

</xs:schema>

Here, in the namespace art, or fully http://www.example.com/music we defined a datatype Artist, and later we can use this a as a datatype with type="art:Artist" (with <xs:element name="Representatives" maxOccurs= "unbounded" type="art:Artist"/>).

We also defined a datatype genre with the child elements title, period (from a certain year to a certain year), region, and representatives (an element that can be repeated several times, and is of a type artist).

Now in another document we can define the song element.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace=
 "http://www.example.com/music"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:art="http://www.example.com/music">

<xs:element name="song">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Title" type="xs:string"/>

<xs:element name="Artist" type="art:artist"/>

<xs:element name="Genre" type="art:genre"/>

<xs:element name="download" type="xs:boolean"/>

 </xs:sequence>

 <xs:attribute name="Duration" type="xs:duration"/>

 </xs:complexType>

</xs:element>

</xs:schema>
We can reuse the already written schemas. We use xs:include to include a schema from another document (copy-paste). Example of this is:

<xs:include schemaLocation=“collection.xsd"/>

We use xs:redefine to do the same, plus this lets us redefine schema. xs:import is for reusing definitions from other namespaces, it is like a system of libraries:

<xs:import namespace=

 http://www.w3.org/XML/1998/namespaceschemaLocation=

 "myxml.xsd"/>

Now we can reference an external element from the imported namespace in our schema.

The main point is that XML Schema adds types and that reusability for top down design is by means of derivation by extension and derivation by restriction. All this is mostly explained in the previous text.

XSLT

As CSS is a stylesheet in HTML, XSL (eXtensible Stylesheet Language) is a stylesheet for XML. XSLT is a language for formatting XML documents. It defines formatting which enables the display of XML documents in customizable way, and to see it like HTML. For example you can show certain information highlighted depending on the condition, or sort or filter information. It works in a way that it applies a certain pattern to a template to generate the output tree based on the input tree in the XML document. Some the elements in the output tree can be reordered, some of them may be left out, depending on the pattern in the XSLT. And the important thing is that the documents can be displayed directly in browsers.

XSLT is a W3C standard, it uses XPath, and it is best compatible with Internet Explorer 6.0 or higher. Unlike CSS, in order to display XML in another way than directly as a code, it is necessary to use XSLT.

The basic structure for XSL without any element is:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:fo="http://www.w3.org/1999/XSL/Format">

</xsl:stylesheet>
Now we need to add content. Let’s start with an example. We want to display the artists from the artists.xml file

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="text/xsl" href="artist.xsl"?>

<Artists>

 <Artist>

 <Title>Vlatko Stefanovski</Title>

 <URL>http://www.stefanovski.com</URL>

 <Country>Macedonia</Country>

 </Artist>

 <Artist>

 <Title>Ella Fitzgerald</Title>

 <URL>http://www.fitzgerald.com</URL>

 <Country>USA</Country>

 </Artist>

 <Artist>

 <Title>Louis Armstrong</Title>

 <URL>http://www.armstrong.com</URL>

 <Country>USA</Country>

 </Artist>

</Artists>

in a form of table. To the original file we added one line <?xml-stylesheet type="text/xsl" href="artist.xsl"?>, which tells the parse where to look for the stylesheet.

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

 <html>

 <body>

 <h2>Artists</h2>

 <table border="1">

 <tr bgcolor="#eeeeee">

 <th>Title of the Artist</th>

 <th>URL for the Artist</th>

<th>Country of the origin</th>

 </tr>

<xsl:for-each select="Artists/Artist">

 <tr>

 <td><xsl:value-of select="Title"/></td>

 <td><xsl:value-of select="URL"/></td>

 <td><xsl:value-of select="Country"/></td>

 </tr>

</xsl:for-each>

 </table>

 </body>

 </html>

</xsl:template>

</xsl:stylesheet>

The important xsl markup identifiers used in this example are xsl:value-of and xsl:for-each. The first one is used to display the value of the element coming after the xsl: value-of. So <xsl:value-of select="Title"/> identifies the value selected by the element Title (because of the <xsl:for-each select="Artists/ Artist"> it is actually Artists/Artist/Title), so what will be shown is for example Vlatko Stefanovski. On the other hand xsl:for-each element states that everything written inside it will be repeated for all the child elements of the element mentioned in the xsl:for-each. In this example

<xsl:for-each select="Artists/Artist">

 <tr>

 <td><xsl:value-of select="Title"/></td>

 <td><xsl:value-of select="URL"/></td>

 <td><xsl:value-of select="Country"/></td>

 </tr>

</xsl:for-each>

for each child Title, URL, and Country of the Artists/Artist element, its value will be displayed as described by the <td> element. This is all a template (xsl:template) which matches (match=”/”) the template to the root (/) of the XML source document.

This is just simple displaying of the entire XML document in the way it is written. Now there are many possibilities for custom display.

We can sort the information in the XML document using xsl:sort element (<xsl:sort select="Title"/>). The information will be displayed sorted, alphabetically or numerically. The whole example:

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

 <html>

 <body>

 <h2>Artists</h2>

 <table border="1">

 <tr bgcolor="#eeeeee">

 <th>Title of the Artist</th>

 <th>URL for the Artist</th>

<th>Country of the origin</th>

 </tr>

<xsl:for-each select="Artists/Artist">

<xsl:sort select="Title"/>

 <tr>

 <td><xsl:value-of select="Title"/></td>

 <td><xsl:value-of select="URL"/></td>

 <td><xsl:value-of select="Country"/></td>

 </tr>

</xsl:for-each>

 </table>

 </body>

 </html>

</xsl:template>

</xsl:stylesheet>

Also, the paths after the keyword select are XPaths, so any XPath expression can be used there. For example we can write <xsl:for-each select="Artists/Artist[Country=’USA’]"> and only the Artist elements whose child element Country has the value USA will be displayed.

XSLT has more possibilities to filter the content of the XML document. We can choose to display certain content only if a condition is fulfilled. For this we use xsl:if element. (The idea is of the if statement.)

 <xsl:if test="condition">content…</xsl:if>

To write if then else statements you can use the <xsl:choose> element:

<xsl:choose>
 <xsl:when test="condition">
 one content…
 </xsl:when>
 <xsl:otherwise>
 different content….
 </xsl:otherwise>
</xsl:choose>

XML Query Language

XQuery is a language for querying and processing XML data. It is a fully compositional, functional, strongly typed language consisting of expressions returning sequences of values.

Expressions return node sequences, sequences of simple values, and even sequences of nodes and simple values. For example:

for $x in (1 to 10) return ($x*2)

evaluates 2,4,6,8,10,12,14,16,18,20

Four main constituents of XQuery are:

· FLWR (compare to SQL)

· XPath expressions

· Element construction

· System defined and user defined functions

We will make a comparison of XQuery and SQL on the example of finding the names of books that have authors which are both book and magazine authors:

XQuery:

for $c in book,
 $o in magazine

where $c/author_id=$o/author_id

return $c.name

SQL:
SELECT book.name FROM book, magazine

WHERE book.author_id=magazine.author_id

The difference is that SQL sees data as if put in a table, where the rows are different elements, and the columns are characteristics of elements line element.name, element.author and so on. So querying is simply done by selecting certain rows and columns based on the query conditions.

XQuery has an XML structure, and also uses XML syntax. XQuery sees data as elements (nodes) with certain characteristics, and the expressions are actually enumeration of values.

Data types in XQuery are primitive types, as in XML, types derived from primitive types. Together they are atomic types. Nodes are element, attribute, namespace, text, comment, processing-instruction, and document (root) nodes. Node values and atomic values are both called simple values.

XQuery element constructor is used for defining elements, which are usually used to give appropriate output to a query. It consists of start tag, end tag, and optional content in between. Example of an element constructor for the person element:
<ele persid {$id}>

 {$name}

 {$age}

</ele>

Element construction is just like XML. Construct an element <ele>, with attribute @persid filled with value returned by variable $id, and content filled with the nodes returned by variables $name and $age.

F(or)L(et)W(here)R(eturn) expressions are the central control structure of XQuery. They construct a new result by connecting elements and attributes.

FOR and LET bind values to variables, or distinct certain tuples based on XPath expressions.

Syntax: FOR variable IN value

Example: for $artist in document (“artists.xml”)//Artist

Syntax: LET variable := expression

Example: let $number := 1

WHERE filters some of the tuples, based on their values:

Syntax: WHERE expression

Example: where $artist= $album/artist

RETURN realizes the body of the iteration by FOR. This is typically used for constructing result elements.

Syntax: RETURN expression

Example: return <person> { $artist/name } </person>

If we use the example with the artists and albums, and add the artist element into the album:

albums.xml:

<Albums>

 <Album ID="a108">

 <Title>A Star For Ever</Title>

 <Artist>Louis Armstrong</Artist>

 <Year>1982</Year>

 <Description/>

 </Album>

 <Album ID="a109">

 <Title>Reggae Fever</Title>

 <Artist>Bob Marley</Artist>

 <Year>1994</Year>

 <Description/>

 </Album>

</Albums>

artists.xml:

<Artists>

 <Artist ID="bm45">

 <Title>Bob Marley</Title>

 <URL>http://www.marley.com</URL>

 <Country>Jamaica</Country>

 </Artist>

 <Artist ID="a34">

 <Title>Louis Armstrong</Title>

 <URL>http://www.armstrong.com</URL>

 <Country>USA</Country>

 </Artist>

</Artists>

for $artist in document(“artists.xml”)//Artist,

for $album in document(“album.xml”)//Album

where $artist/Title = $album/Artist

return <artistfull>

 {

 $aritst/Title,

 $artist/Album

 }

XQuery uses XPath for querying nested structures. Operator /name chooses the “name” child of the root element. If we want to select the song from the album we use:

let $album := document(“albums.xml")/album

To connect the document with the variable album, and for the query:

return $album/song.

The document function returns the root node of a document.

Operator // is used to select certain descendants of the element depending on the rest of the query. Expression $album//son[@class= “something"] selects only <son> element nodes that have an attribute node named class whose value is “something”.

Conditional expressions in XQuery are If - then – else expressions. For example, we can ask for the owners of objects, but specifying that if the object is a house than the owner is human, otherwise it is a company.

RETURN

<owner>

{

 IF $vi/type = “house” THEN

 $v/human

 ELSE $/company

}

</owner>

In XQuery there are following operators: infix and prefix operators, arithmetic and logical, and sequence operators (UNION, INTERSECT, EXCEPT).

For sorting results we use a sortby expression, for example for sorting songs by their duration:

$song sortby (duration)

The implementation needs to compare two values from the input sequence to determine which comes first. It does that by evaluating the ordering expression(s) in the context of a value from the input sequence.

The quantifiers also exist in Xquery: existential quantifier– some and universal quantifier– every. In the following example we see how to choose lyrics that all or some of them satisfy certain conditions.

FOR $x IN //collection

WHERE SOME (ALL) $y IN $x//lyrics SATISFIES

 contains ($y, “sea”) OR contains ($x, “sky”)

RETURN $x/title

We also can write functions in XQuery. Function definitions appear in the query prologue of an XQuery program. Here is an example of the descendant-or-self which through recursion returns all descendants of the specified node.

function descendant-or-self ($x)

{

 $x, for $y in children($x)

 return descendant-or-self($y)

}

descendant-or-self(<a>XY)

Why use XML-based approach to Sematic Web?

How can activities of Web participants be coupled flexibly yet reliably to find and carry out their Web related tasks more effectively?

By providing a general and widely adopted framework for defining and deploying application domain specific vocabularies with eXtensible Markup Language (XML)

By agreeing on a common vocabulary, information is given well defined meaning enabling computers and humans to cooperate across organizational borders. The XML related standards DTDs, XML Schema and the upcoming XML Query standard provide a sound technological basis employed by e.g. the XML e-business frameworks like RosettaNet or ebXML. It is only necessary for the creators of applications in the same domain to agree on specific DTDs or XML schematas for the predominant documents.

XML is supported by IT companies like IBM, Sun Microsystems, Oracle, Microsoft. XML document can be delivered over the HTTP protocol easily.
5.3 Defining Vocabularies with RDF

What are the limitations of XML? For example CLASSICAL | ROCK | POP | RAP | JAZZ | TECHNO | ETHNO is just a choice of allowed strings. We cannot represent that DIXIE is a subclass of JAZZ, that BLUES overlaps with ROCK and ETHNO. Bottom up reuse of vocabularies, independently evolved XML Schemas for one and the same thing. Another question is how you model an „address“?

There is a need to put data in a form that can be used by machines across the web. Since data is different, it is not possible to have a standard for defining data. There is a possibility of having the standard for description of meta data. Interpretation depends on the context of a resource e.g. Jaguar (car vs. beast). Using their experience and cognitive abilities humans may infer the context of a resource in many ways even if it is not made explicit. Software can interpret context only if it is described explicitly and formally. RDF and the ontology languages building upon RDF provide means to explicate (part of) this context.

Motivation for RDF is that RDF Instances should not depend on the syntax, there is a possibility for reification, designing collections of objects, and in RDF Schema for defining your own Vocabularies. RDF is to be another step towards the automated web, and to enable web agents to process data, in this way to enable extracting the information from the documents and handling that information outside the working environment they were created in.

RDF

RDF-Resource Description Framework defines a framework for structuring and describing resources like documents in the Semantic Web. It enables the definition of vocabularies for the description of resources in an application domain. Not a programming language, but a general framework that helps defining metadata. The idea of RDF is to provide a mechanism for describing the data that is independent of the domain, so it can be used across whole domain.

Goals of RDF are extensibility, interoperability, and reuse of vocabularies, and improved support for interpretation of data by machines.

RDF uses many of the already existing concepts, URIs (vocabularies are based on URIs and extensible), metadata, mostly XML Syntax (even though others can be used), data types, entailment (enables inference in RDF), and property centric approach, so where is the difference?

RDF tries to give the machines an idea of some human concepts in a way understood by them. So the basic human readable structure, sentence is modeled by the machine understandable graph. Also a few other concepts, such as relating the statements in a concept of time, place, speaker, and groups, are also modeled with the graph.

The basic concepts of RDF are resource, property, and statement (and class in RDF Schema).

RDF Resource forms the central concept in RDF. Anything that can be described can act as a resource Web page, part of web page, web site, book, photograph, persons, … Resources are identified by a resource identifier - URI (plus optional anchor IDs). We can compare it to an entity (in the Entity Relationship model), and partially to an object (in an object-oriented model).

An RDF Property is used to express a characteristic of a resource or a binary relation between resources. It is a predicate in a statement. A property can be compared to a (binary) relationship among entities (in the Entity Relationship model). Since RDF uses a property-centric approach, properties are not a part of resource, but are modeled independently, on the same level as resources.

Statement consists of so called triplets:

· Subject S (which is resource),

· Predicate P (which is property), and an

· Object O (which is resource or literal)

The RDF Data Model is a simple but powerful data model for the description of resources and the creation of metadata.

RDF is modeled by a direct labeled graph. For example, Figure 5.11 shows the graph model of a statement:

[image: image28.png]

Figure 5.11 RDF graph representation

Graph consists of nodes and arc. Graph is actually a set of URIs. To model a statement with a graph, draw an arrowed line from the shape produced from Subject (node) to the shape produced from Object (node) and label it with Predicate (arc).

Nodes represent the subject and the object of an RDF statement. They can be urirefs (URI references), literals (strings of text), and blank nodes (unique to the graph and represent entities that do not have a name – usually more complex entities). Blank nodes are introduced for modeling purposes e.g. to represent an aggregation, which has no identity of its own.

An Arc represents the predicate of an RDF statement. It is labeled with a URI referring to an RDF property, and directed from the subject of a statement to the object of a statement. Nodes may be labeled or unlabeled. A label of a node is either a URI identifying a resource or a literal. Arcs must always be labeled with a URI which identifies the associated property. In this way statements are actually sets of URIs and literals.

[image: image29.jpg]Gipsy song is performed by Viatko Stefanovski
1
subject \ v}ject

(resource) predicate (resource or literal)
| (property)
Performed by
Song represented Attist represented
by entry in a (fictive) by his homepage

song directory

Figure 5.12 Example of RDF graph

Figure 5.12 shows an example of modeling a human readable statement into an RDF statement. More precisely we might say <subject> HAS <predicate> <object>, or song has a performer artist.

RDF is only a framework and it can be written using different syntaxes. Most often used are XML and Notation3.

Notation3 is a simpler way and is mostly used for the educational purposes. It is close to the human readable RDF.

RDF at the moment mostly uses the XML syntax. RDF and XML are complementary: RDF addresses by reference many issues connected to the character of information, such as internationalization, character sets, which are fully described by XML. So in the continuation this syntax will be explained.

All the RDF metadata are written inside the rdf:RDF element:

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf ="http://w3.org/1999/02/22-rdf-syntax-ns#" >

 RDF DATA

</rdf:RDF>

The <rdf:Description> element is the next level, and is used to describe the resource (it identifies the resource), and it enables the resource to only be named once in the document. The value of the about attribute of this element gives the name to that resource.

<rdf:RDF RDF xmlns:rdf = “http://www.w3c.org/1999/02/22-rdf-syntax-ns#”

xmlns:s = “http://www.example.org/musicschema/ “ >

 <rdf:Description about="http://www.music.org/songs/gipsySong">

 <s:Performedby>

 Vlatko Stefanovski

 </s:Performedby>

 </rdf:Description>

</rdf:RDF>

The above example shows that the resource http://www.music.org/ songs/gipsySong is performed by Vlatko Stefanovski. Two namespaces are used in this example. One is http://www.w3c. org/1999/02/22-rdf-syntax-ns# for the rdf namespace. XML syntax can be written as serialization and abbreviated.

How to translate the RDF graph structure into XML’s tree-oriented notation?

[image: image30.jpg]<rdf Description rdf about = *http://www.music org/songs/g/gipsySong™>
<music:performedby>
<rdf Description>
<personname> Viatko Stefanovski</person:name>
<person-homepage>
<rdf Description
about = *hitp://www. arfists. org/stefanovski">
</rdf Description>
</person:homepage>
Irdf Description= person:name person:homepage

</music-performadby>
http://www. artists.org/stefanovski,
Vlatko Stefanovski

music:performedby

<Irdf-Description>

Figure 5.13 XML serialization

In the above example also we have a blank node example. This blank node is an unnamed entity with the name Vlatko Stefanovski and homepage http://www.srtists.org/stefanovski. In the XML representation this blank node is represented by the <rdf: Description> element without the about attribute.

[image: image31.jpg]<rdrDescription raf-about = * .. gipsySong” >
<musicperfomedby>
<rdfDescription raf-nodeld
<muscperformedby>
<rdrDescription>
<personname> Viatko Stefanovsii</person-name> a,,ot,,e,s,,,g

<personhomepage>
7/ erformedby

<raf-Destription
efson:homepage

about = * http./iwww. artists orgisteranovsia” >
http:/www.artissorg/stefanovsd

blank1">

<Irdf Description>
<Ipersonhomepage>
<Iraf Description> musicperiommeds
</music-performedboy>
<Iraff Description>
</music-performedoy>
<Iraf Description> person-name,
<rar-Description rdf-about = * __ anothersong’ >
<musicperfomedby>
<rdrDescription rdfnodeld = *#blank1”/>
</music-performedoy>
<Iraf Description>

Second Viatko Stefanovski

Reference.

Figure 5.14 XML serialization – referencing

For a node N with a second ingoing node an additional description element has to be defined that also refers to N via rdf:about. For blank nodes an identifier has to be introduced in this case (see Figure 5.14).

So far described is the serialization syntax, a straightforward way. A rdf:Description elements is used to describe a subject of the statement and its childe is the predicate (with a namespace denotation) and the child of the predicate element is the object element which can again be rdf:Description or just a literal. So actually, nodes are described as the rdf:Description elements.

The abbreviated syntax enables shorthand writing RDF statements, but still following the strict rules. Three forms of abbreviation are defined for the basic serialization syntax. They make RDF documents more obvious to the human reader and simpler. We will show the transformation to the abbreviated syntax with a few examples.

The first form of the abbreviated syntax we will show on a simple example of a resource Gipsy song performed by Vlatko Stefanovski. The example for the serialization syntax is:

<rdf:RDF xmlns:rdf = “http://www.w3c.org/1999/02/22-rdf-syntax-ns#”

xmlns:s = “http://www.example.org/musicschema/ “ >
 <rdf:Description

 about="http://www.music.org/songs/gipsySong">

 <s:Performedby>

 Vlatko Stefanovski

 </s:Performedby>

 <s:Album>

 Gipsy Magic

 </s:Album>

 </rdf:Description>

</rdf:RDF>

This form is used when the properties inside the rdf:Description element do not repeate, and when their values are literals. In this example we can, instead of writing every property s:Performedby and s:Album as separate elements, write them as attributes of the rdf:Description element:

<rdf:RDF xmlns:rdf = “http://www.w3c.org/1999/02/22-rdf-syntax-ns#”

xmlns:p = “http://www.example.org/musicschema/ “ >
<rdf:Description

 about="http://www.music.org/songs/gipsySong"

 s:Performedby: Vlatko Stefanovski

 s:Album: Gipsy Magic/>

</rdf:RDF>

The second abbreviated form is used when writing the nested rdf:Description elements. We will look at the example with a blank node, describing the performer of Gipsy song, whose name is Vlatko Stefanovski, and home page is http://ww.artists.org/stefanovski. The serialization syntax is as follows:

<rdf:Description rdf:about = “http://www.music.org/songs/g/gipsySong”>

 <s:performedby>

 <rdf:Description about:=

 “http://www.artists.org/stefanovski”>>

 <person:name> Vlatko Stefanovski</person:name>

 <person:email>

 stefanovski@artists.org

 </person:email>

 </rdf:Description>

 </s:performadby>

 </rdf:Description>

Instead of making the nested rdf:Description element the child of its property element, in this abbreviated form, the resource represented by this element is written as an rdf:resource attribute of the parent property (of the previous rdf:Description element). Also, all the children elements of the previous rdf:Description element are now the attributes of the same property.

<rdf:RDF>

 <rdf:Description

 about="http://www.music.org/songs/g/gipsySong ">

 <s:Performedby

rdf:resource="http://www.artists.org/stefanovski "

 v:Name="Vlatko Stefanovski"

 v:Email="stefanovski@artists.org" />

 </rdf:Description>

 </rdf:RDF>

The third form applies to the common case of a Description element containing a type property. We will show it on the example of a Gipsy song being performed by Vlatko Stefanovski who is a person (whose type is person). The seralization syntax is as follows:

<rdf:RDF>

 <rdf:Description about="

 http://www.music.org/songs/g/gipsySong ">

 <s:Performedby>

 <rdf:Description about="http

 http://www.artists.org/stefanovski ">

 <rdf:type resource="s:Artist"/>

 <v:Name>Vlatko Stefanovski </v:Name>

 <v:Email>stefanovski@artists.org</v:Email>

 </rdf:Description>

 </s:Performedby>

 </rdf:Description>

</rdf:RDF>

Since type property actually says that an instance is a type of a class (in RDF Schema, which will be explained later), this abbreviation makes the s:Artist a new element instead of the rdf:Description element, and the rdf:type element is no longer needed.

<rdf:RDF>

 <rdf:Description about="

 http://www.music.org/songs/g/gipsySong ">

 <s:Performedby>

 <s:Artist about ="http

 http://www.artists.org/stefanovski ">

 <v:Name>Vlatko Stefanovski</v:Name>

 <v:Email>stefanovski@artists.org</v:Email>

 </s:Artist>

 </s:Performedby>

 </rdf:Description>

</rdf:RDF>

RDF Schema

The RDF data model itself provides no mechanisms for describing the properties, nor does it provide any mechanisms for describing the relationships between the properties and other resources. The RDF vocabulary description language defines classes and properties that can be used to describe other classes and properties.

The RDF vocabulary description language - RDF Schema stresses reuse and extension of existing schemata and semantic enrichment by concept hierarchies. It enables statements on the schema level to define classes of resources, define relationships between these classes, define the kinds of properties that instances of that classes have, define relationships between properties to restrict possible combinations of classes and relationships/properties and allows mixing of schemata. RDF Schema specifies some mechanisms needed to define elements, to name the classes of resources they may be used with, to restrict possible combinations of classes and relationships, and to help detect violations of those restrictions.

The core classes and properties define the machinery of RDF's vocabulary description language. The utility and container vocabulary provide additional support for describing collections and RDF statements.

RDF core classes are: rdfs:Resource - all things described by RDF are called resources, and are members of the class rdfs:Resource; rdfs:Literal - property values such as textual strings are examples of RDF literals; rdfs:Class - this corresponds to the concept of a type or category of resource. RDF class membership is used to represent types or categories of resource; rdf:Property - rdf:Property represents resources which are RDF properties.

RDF core properties are: rdf:type - indicates that a resource is a member of a class. When a resource has an rdf:type property whose value is some specific class, we say that the resource is an instance of the specified class; rdfs:subClassOf - represents a specialization relationship between classes of resource. It is transitive. rdfs:subPropertyOf is used to specify that one property is a specialization of another.

Restrictions on properties are rdfs:range - used to indicate which class(es) must the values of a property be members of. rdfs:domain is used to indicate which class(es) can have their members be a resource of the indicated property.

User friendly concepts in RDF Schema are rdfs:label - gives a name of the resource that can be understood by humans and rdfs:comment - gives the description of a resource that can be understood by humans.

Some utility classes are rdf:Statement that represents statements about the properties of resources; rdf:subject - the subject of an RDF statement; rdf:predicate - the predicate of an RDF statement; rdf:object - the predicate of an RDF statement.

Some additional classes and properties are rdfs:seeAlso - used to indicate a resource that can provide additional information about the subject, rdfs:isDefinedBy - a subproperty of rdfs:seeAlso, and indicates the resource defining the subject resource. As with rdfs:seeAlso, this property can be applied to; rdf:value - identifies the principal value (usually a string) of a property when the property value is a structured resource.
[image: image32.emf]Class

<rdfs:Classrdf:about= “http://www.ipsi.fhg.de/music-

schema#MusicComposition“>

<rdfs:subClassOf

rdf:resource=“http://www.w3.org/2000/rdf-schema#Resource”>

<rdfs:label>MusicComposition</rdfs:label>

</rdfs:Class>

Instance

<rdf:Descriptionabout = “http://www.operas.org/Zauberflöte”>

<rdf:type

rdf:resource= “http://www.ipsi.fhg.de/music-schema#MusicComposotion>

</rdf:type>

…

</rdf:Description>

music:MusicComposition

rdfs:Resource

rdf:type

rdfs:subClassOf

www.operas.org/Zauberflöte

Figure 5.15 Example of defining an RDF class

In the example shown in Figure 5.15 we see how to define a class, and how to connect it to its instance. Here we have a class MusicComposition which is a subclass of the class resource, and it is labeled as a Music composition for human understanding. We can make an instance of this class by saying some resource (Zauberfote) is a type of this class.

In a concise instance syntax, if an instance resource is assigned to a class via a rdf:type attribute, the name of the class can be used in defining the instance instead of the rdfs:Description element.

<rdf:Description rdf:about = “http://www.operas.org/Zauberflöte”>

 <rdf:type rdf:resource=

 “http://www.ipsi.fhg.de/music-schema#MusicTitle >

 </rdf:type>

 …

 </rdf:Description>

becomes:

<music:MusicTitle rdf:about=

 “http://www.operas.org/Zauberflöte”>

 …

</music:MusicTitle>

As said before, the class rdf:Property is used to define a resource which is an RDF Property. Each property is an instance of this class. The properties rdfs:domain and rdfs:range are used to restrict properties. rdfs:domain defines to instances of which class the property can be assigned to. rdfs:range restricts the set of possible values of the properties to the instances of a class. It is comparable to an attribute type in object-oriented languages.

[image: image33.jpg]<rdf:Property rdf.about= “http://www.ipsi.fhg.de/music-schema#composer>
<rdfs:label>Composer</rdfs:label>

<rdfs:domain rdf.resource =*http://www.ipsi.thg.de/music-schema#Music Title"/>
<rdfsirange rdfresource = ‘http://www.ipsi.thg.de/person-schema#Person”/>

</rdf.Property>
rdftype rdf:Property
e
rdfs:domain rdfs:range

person:Person

Figure 5.16 Example of defining a property

[image: image34.emf]<rdf:Descriptionrdf:about= “http://www.operas.org/Zauberflöte”>

<music:composer>

<rdf:Descriptionrdf:about=“http://www.artists.org/Mozart”>

</rdf:Description>

</music:composer>

</rdf:Description>

rdf:Property

music:composer

rdf:type

rdfs:range rdfs:domain

music:MusicTitle

person:Person

http://www.operas.org/Zauberflöte

www.artists.org/Mozart

music:composer

rdf:type

rdf:type

Instance Level

Figure 5.17 Property with instance

In the Figure 5.17 we see how to constrain properties. Composer is a property, and its domain is music title, and its range is person. This means that the only resources that can be a composer are resources that belong to the class person, and the resources that can have the property composer are the ones that belong to the class music title. More simply, composers can only be persons, and they can only compose music titles.

[image: image35.emf]Class-centric

� Attributes as part of the

class definition

� Stresses common

structure

Property-centric

� Property as first-class

object

� Stresses extensibility and

flexibility with respect to

properties

music:composer

rdfs:range rdfs:domain

music:MusicTitle person:Person

rdf:label

rdfs:domain

rdfs:Literal

rdfs:range

MusicTitle

composer : Person

label : String

Figure 5.18 Class-centric vs. Property-centric
In the Figure 5.18 we show some of the characteristics for both class – centric and property – centric approach. In the class – centric approach attributes are only parts of objects, and the idea is to make structures that objects can get from classes. In the property – centric approach attributes or relations are independent objects, and not just parts of classes. In this way there is more flexibility in changing them.

In the Figure 5.19 there is an example of subclasses, and instances, showing that if an instance has a class that is subclass of another class, then it also has this super class.

RDF Property Hierarchies - rdfs:subPropertyOf is used to specify that one property is a specialization of another property. If a resource r has value v for property p1 and property p1 is subproperty of p2 than r also has value v for property p2 (see Figure 5.20)

[image: image36.emf]rdfs:subClassOfrepresents a specialization relationship between RDF

classes (transitive).

music:MusicTitle

music:Genre

music:Classic

music:Modern

music:Opera

music:Sonata

music:RockOpera

music:Rock

http://www.operas.org/Zauberflöte

rdf:type

rdf:type

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

Figure 5.19 Defining Concept Hierarchies
[image: image37.emf]performs

sings

Cher

rdfs:subPropertyOf

sings

performs

SomeSongisa value

forsings

“SomeSong“

SomeSongis

also a valueof

performs

Figure 5.20 Property Hierarchies
In the Figure 5.21 there is a connection of classes and properties in RDF Schema. The range restriction for rdf:object is not shown in the picture since it can be a rdfs:Resource or a rdfs:Literal.

[image: image38.emf]rdfs:label

rdfs:Class

rdfs:range

rdf:Property

d

rdfs:comment

rdfs:Literal

rdfs:Resource

rdf:Statement

rdf:subject

rdf:object

rdf:predicate

rdf:type

rdfs:subClassOf

rdfs:subProperyOf

r

r

rdfs:domain

d

d

d

d

r

d

r

r

d

r

d

d

d

r

r

r

r = rdfs:range

d = rdfs:domain

Figure 5.21 Restriction of the Core RDF Properties

Supporting interoperability with RDF

RDF contributes in different ways to interoperability between resource descriptions in the Web. RDF makes the publication of a Schema in the Web and references to this Schema easy (URI, XML Namespace). The goal is to refer to the same Schema/Vocabulary.

RDF enables mixing different Schemata into one RDF document. The goal here is rather to combine several existing schemata than to write your own proprietary one.

RDF supports the systematic extension of existing Schemata. The goal - when defining your own schema, you can reuse and extend an existing Schema A (interoperability with Schema A), defining subclasses of existing classes (rdfs:subClassOf), adding properties to existing classes (enabled by property-centric approach). You can define subproperties of existing properties (rdfs:subPropertyOf). Extension of an existing Schema A has the advantage that software which can interpret resources of Schema A can also, at least partly interpret resources of the extended Schema.

	
	XML
	RDF

	Instance
	Predominant structure:
ordered tree
graphs via id/idref
	Graph:
Differentiates between Bag, Sequence, Alternative

	Main use
	Exchange (selfcontained) Documents (messages)
	Superimpose information on "resources", relate resources

	Complex types
	Complex datatypes (Alternative, Sequence, Repetition)
	(Complex) Object types
Resource=Object
Property=Relationship

	Simple types
	Very differentiated
(due to XML schema)
	Very little support
(use XML Schema)

	Reuse
	Only top down
	Bottom up and top down

	Main use of schemas
	Validation
("Type Check")
and Type annotation
	Classification reasoning

Figure 5.22 Comparison of XML and RDF

5.4 Ontologies and Ontology Languages

RDF Schema is a language for describing. It can only describe resources and properties. But it can not make restrictions. There is a need for further semantics. This is in ontologies, which man has developed through all science, trying to catalog and connect his knowledge in specific areas. If there is a possibility to use these ontologies, we may more easily bring understanding to computers.

Ontology describes a knowledge base. It formally defines a common set of terms that are used to describe and represent a domain. For example, all the objects, their attributes and relations among them, and the restrictions – a library, with the objects book, author, title, their properties has author restricted to only books can have authors, has title restricted to book can have only one title…

As defined by T.R. Gruber: „Ontology is a specification of a conceptualization.” A conceptualization is an abstract, simplified view of the world that we wish to represent for some purpose. Ontology languages are semantic markup languages for defining ontologies. They are built on RDF, and are enhancements of RDF Schema.

DAML+OIL is a combination of the two predecessor ontology languages: DAML – DARPA Agent Markup Language and OIL - Ontology Inference Layer.

OWL (Web Ontology Language) is the successor DAML + OIL currently developed by the W3C Web Ontology Group (Status: Working Draft). OWL Lite is a subset of OWL.

DAML+OIL

DAML+OIL together tend to provide far more sophisticated classifications and properties of resources than RDFS. DAML+OIL divides the world up into objects, which are elements of DAML classes, and datatype values, i.e., values that come from XML Schema datatypes.

Basic concepts of DAML+OIL are: class - used for describing Resources, defining basic types, property - binary relation between two classes, and restricting properties - to enable better understanding and more precise definitions.

An example of a class is defining a class Animal:

<rdfs:label>Animal</rdfs:label>

 <rdfs:comment> A class of animals </rdfs:comment>

<daml:Class rdf:ID="Animal"> </daml:Class>

Anyone can refer to this class by using the uri of the containing page followed by #Animal.).

As another example we will model a man as a person (subclass of the class person) and also a male (subclass of a class male). Here we use a concept of subclasses to state that the daml class man is a subclass of rdf resources person and male.

<daml:Class rdf:ID="Man">

 <rdfs:subClassOf rdf:resource="#Person"/>

 <rdfs:subClassOf rdf:resource="#Male"/>

</daml:Class>

In ontology languages we can say that one class is disjoint with another, so if something is an instance of one class than we can right away say that it is not the instance of a disjoint class. In the next example we define two classes, male and female. In the class female we state that it is disjoint with the class male.

<daml:Class rdf:ID="Male">

 <rdfs:subClassOf rdf:resource="#Animal"/>

</daml:Class>

<daml:Class rdf:ID="Female">

 <rdfs:subClassOf rdf:resource="#Animal"/>

 <daml:disjointWith rdf:resource="#Male"/>

</daml:Class>

Nothing can be both male and female, because we defined these two classes are disjoint.

daml:disjointUnionOf is a class that has only subclasses that are disjoint.

daml:sameClassAs is the class that is identical to another class.

daml:equivalentTo is an equivalent class to another class.

Another thing we can do here is make class expressions. Boolean class expressions are daml:intersectionOf, daml:unionOf and daml: complementOf.

DAML+OIL properties are generally divided into two sorts: the ones relating objects to other objects and the ones relating objects to datatype values .

An example of the object property follows, of the property has parent, with the rdf restrictions domain and range. Here property is a relation.

<daml:ObjectProperty rdf:ID="hasParent">

<rdfs:domain rdf:resource="#Animal"/>

<rdfs:range rdf:resource="#Animal"/>

Next example shows the datatype property:

<daml:DatatypeProperty rdf:ID="age">

<rdfs:comment> age is a DatatypeProperty whose range is xsd:decimal. Age is also a UniqueProperty (can only have one age)

</rdfs:comment>

<rdf:type rdf:resource=

 "http://www.w3.org/2001/10/daml+oil#UniqueProperty"/> <rdfs:range rdf:resource="http://www.w3.org/2000/10/

 XMLSchema#nonNegativeInteger"/> </daml:DatatypeProperty>

Here property is an attribute.

Some other properties are daml:TransitiveProperty, daml: UniqueProperty, and daml:UnambigousProperty.

Next we have an example of a subproperty: property hasFather is a subproperty of hasParent.

<daml:ObjectProperty rdf:ID="hasFather">

<rdfs:subPropertyOf rdf:resource="#hasParent"/>

<rdfs:range rdf:resource="#Male"/>

</daml:ObjectProperty>

Other properties are daml:samePropertyAs, which gives us a possibility to say that some property is the same as other, or to create synonyms, and daml:inverseOf which says hat one property is inverse of another property.

A key feature of any web-based ontology language is that statements about entities such as classes and properties can be distributed among different locations. For this restrictions are very important.

<daml:Class rdf:about="#Animal">

<rdfs:comment>

Animals have exactly two parents, i.e.: If x is an animal, then it has exactly 2 parents (but it is NOT the case that anything that has 2 parents is an animal).

</rdfs:comment>

<rdfs:subClassOf>

 <daml:Restriction daml:cardinality="2">

 <daml:onProperty rdf:resource="#hasParent"/>

 </daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

Here we define cardinality of the property hasParent of the class animal, saying it has to be 2, so an animal must have two parents.

Value and type restrictions are daml:toClass, restricting a property only to classes specified there, daml:hasValue, giving only certain values to properties, daml:hasClass, saying that only certain class can have this property.

<daml:Class rdf:about="#Person">

 <rdfs:subClassOf>

 <daml:Restriction daml:maxCardinalityQ="1">

 <daml:onProperty rdf:resource="#hasOccupation"/>

 <daml:hasClassQ rdf:resource="#FullTimeOccupation"/>

 </daml:Restriction>

 </rdfs:subClassOf>

</daml:Class>

In this example a person can have only one FullTimeOccupation, as specified with maxCardinalityQ=“1”.

In DAML+OIL we can make user defined types.

<xsd:simpleType name="over12">

<!-- over12 is an XMLS datatype based on decimal -->

<!-- with the added restriction that values must be >= 13 -->

 <xsd:restriction base="xsd:decimal">

 <xsd:minInclusive value="13"/>

</xsd:restriction>

</xsd:simpleType>

Here a type is made by restricting that a person that is over12 must have a minInclusive value=“13”.

In DAML+OIL we can make individual classes and properties:

<Person rdf:ID="Adam">

 <rdfs:label>Adam</rdfs:label>

 <rdfs:comment>Adam is a person.</rdfs:comment>

 <age><xsd:integer rdf:value="13"/></age>

 <shoesize> <xsd:decimal rdf:value="9.5"/></shoesize>

</Person>

We can define a class by specifying a collection of its possible values – enumeration:

<daml:Class rdf:ID="Height">

 <daml:one of rdf:parseType="daml:collection">

 <Height rdf:ID="short"/>

 <Height rdf:ID="medium"/>

 <Height rdf:ID="tall"/>

 </daml:oneOf>

</daml:Class>

OWL

OWL enables the definition of various types of relationships between classes (in addition to subclass hierarchies). It gives additional restrictions for property values, additional types of relationships between properties, different kinds of properties. OWL distinguishes between classes and instances (objects) on the one side, and data types and value on the other side (XML Schema datatypes).

OWL is a semantic markup language for publishing and sharing ontologies on the World Wide Web. It is derived from the DAML+OIL Web Ontology Language and builds upon the Resource Description Framework. The OWL language is a revision of the DAML+OIL web ontology language incorporating leanings from the design and application use of DAML+OIL.

OWL Lite is a subset of OWL. The goal of OWL Lite is to provide a language that is viewed by tool builders. It can be viewed as an extension of a restricted view of the RDF language. There are some limitations of OWL LITE: classes can only be defined out of named super classes, there are some property limitations, and the only cardinality values allowed to be explicitly stated are 0 or 1.

Ontology Definition - the body of the ontology consists of: classes, properties, and instances (for use in class definitions). The main component of an ontology is a taxonomy i.e. a class hierarchy.

owl:Class represents the concept of a class in OWL:

<owl:Class rdf:ID=„Music"/>

Subclass hierarchies are built in the same way as in RDFs. They are not required to be acyclic (allow assertion of equality between classes). Classes may have multiple uperclasses. Hierarchy definition starts with the definition of one or more root classes.

There are predefined bottom and a top elements for class hierarchies:

· owl:Thing (top element) - every class is subclass of owl:Thing, every instance is a member of owl:Thing;

· owl:Nothing (bottom element) - owl:Nothing is subclass of every class, no instance is a member of owl:Nothing.

A class definition may also contain other class relationships:

· owl:disjointWith – this property is used to express that a class is disjoint with another class (no instances in common);

· owl:sameClassAs – this property is used to express that a class is equivalent to another class (same instances). The values of these properties are defined by class expressions, which (in the simplest case) is the name (URI) of a class.

Example:

<owl:Class rdf:ID=“Singer">

 <rdfs:label>Singer</rdfs:label>

</owl:Class>

<owl:Class rdf:ID="MaleSinger">

<rdfs:subClassOf rdf:resource="#Singer"/>

<rdfs:label>Male Singer</rdfs:label>

</owl:Class>

<owl:Class rdf:ID="FemaleSinger">

<rdfs:subClassOf rdf:resource="#Singer"/>

<owl:disjointWith rdf:resource="#MaleSinger"/>

</owl:Class>

A class expression can be a class name (an URI) an enumeration of instances. The Property Restriction class expressions can be composed from other class expression by using the set operations intersection, union and complement (owl:intersectionOf, owl:unionOf, owl:complementOf).

Also, a class or class expression can be defined by an enumeration of their instances (fixed number of predefined instances).

Example:

<owl:Class rdf:ID=“MusicRating">

 <owl:oneOf rdf:parseType=“Collection">

 <owl:Thing rdf:ID=“good"/>

 <owl:Thing rdf:ID="medium"/>

 <owl:Thing rdf:ID=“bad"/>

 </owl:oneOf>

</owl:Class>

Property Restriction is a special kind of class expression that implicitly defines an anonymous class – the class of objects that fulfill the defined restriction.

Example:

<owl:Class rdf:about="#Trio">

 <rdfs:comment>

 A Trio has exactly three members.

 </rdfs:comment>

 <rdfs:subClassOf>

 <owl:Restriction owl:cardinality=“3">

 <owl:onProperty rdf:resource="#hasMember"/>

 </owl:Restriction>

 </rdfs:subClassOf>

</owl:Class>

There are different kinds of property restrictions:

· restrictions of the possible types of property values: owl:allValuesFrom, owl:someValuesFrom,

· restriction to one property value: owl:hasValue,

· restrictions of the number of property values for one resource: owl:cardinality, owl:maxCardinality, owl: minCardinality.

OWL properties are deferred from RDF properties. It is possible to define different types of properties, where several property types can be combined with each other relationships between properties.

The following kinds of properties imply special characteristics for the defined property P:

· owl:TransitiveProperty * – property P is transitive;

· owl:SymmetricProperty * – property P is symmetric;

· owl:FunctionalProperty – property P can only have one value for each resource;

· owl:InverseFunctionalProperty * – there are not two resources with the same value for property P (comparable to uniqueness constraint in databases);

· *subclass of owl:ObjectProperty

Examples:

<owl:ObjectProperty rdf:ID="hasMember">
<rdfs:domain rdf:resource="#ArtistGroup"/>

 <rdfs:range rdf:resource="#Person"/>

</owl:ObjectProperty>

<owl:SymmetricProperty rdf:ID=“marriedWith">

 <rdfs:domain rdf:resource="#Person"/>

 <rdfs:range rdf:resource="#Person"/>

 <rdf:type rdf:resource=

 "http://www.w3.org/2002/07/owl#FunctionalProperty"/>

 <rdf:type rdf:resource="http://www.w3.org/2002/07/

 owl#InverseFunctionalProperty"/>

</owl:SymmetricProperty>

An ontology may also include individuals, i.e. instances of classes, properties of instances defined by RDF statements. Such instances are defined for use in class definitions RDF&OWL. Properties may also be used to relate one individual to another.

Example:

<Continent rdf:ID="Asia"/>

<rdf:Description rdf:ID="Asia">

 <rdf:type>

 <rdfs:Class rdf:about="#Continent"/>

 </rdf:type>

</rdf:Description>

OWL extends QWL lite with oneOf (enumerated classes), and hasValue property values; disjointWith, unionOf, complementOf, and intersectionOf Boolean combinations, and full cardinality.

RDF and OWL have a syntactic and semantic overlap and the consistent integration of ontology semantic into RDF semantic is not yet clear. In OWL there is more flexibility in defining relations between vocabularies. Additional relationships can be used in inferencing.

5.5 Chalanges for the Semantic Web

Design and evolution of ontologies and the reuse of existing ontologies used for technical documentation, thesauri (e.g. wordnet), product classifications (e.g. uncefact), ontologies through community process, ontology engineering, enriching data with semantics, data and text mining, image understanding, computer linguistics through community process – are just part of the future of the semantic web.

For this we need scalability of methods, querying, distributed reasoning, deployment and acceptance, trust, security, transparency of reasoning, adequacy: Is XML + RDF + OWL the hammer for every nail?

[image: image39.png]S

DSig verty assures
XL Tree S
Lot e Togo Parse
ROF S parse
J e
logi Formua e
orderes
Setof ROF Graph
s 4
canbe—)
conjunction of conjunc
tion
isa o/
I” negated
I
e
e ROF stetement (arc) auertted
vitp GET
’7 =
variable nested logic:
‘subject verb object forumla
ritp GET
con b=l
w
T isa

string

Figure 5.23 Semantic Web loop

Logic and Proof

We have resources and their properties. Now we can introduce logic into this concept. We can make decisions on the base of the statements. We need ways of writing logic into documents to allow such things as rules the deduction of one type of document from a document of another type - the checking of a document against a set of rules of self-consistency and the resolution of a query by conversion from terms unknown into terms known. We already have quotation, next we need to add predicate logic: negation, and, or, …and add quantifiers: every, some.

For example we can state: if all persons with age over 18 must have personal ID and person A is over 18, then person A must have a personal ID.

In the Figure 5.23 we see semantic web loop, Tim Berners-Lee’s idea for introducing logic into the Semantic Web.

Proof is Built on top of logic layer. When someone is granted access to a web site, they can be given a document which explains to the web server why they should have access. The proof will be a chain of assertions and reasoning rules with pointers to all the supporting material (mostly web pages). The intermediate layers (RDF, ontology, logic and proof) are protected ala digital signature.

Digital signatures, which are encrypted blocks of data that computers and agents can use to verify that the attached information has been provided by a specific trusted source.

Logic and proof are keys to the Web of Trust.

The Future

The real power of the Semantic Web will be realized when people create many programs that collect Web content from diverse sources, process the information and exchange the results with other programs (web agents). Even agents that were not expressly designed to work together can transfer data among themselves when the data come with semantics. A typical process will involve the creation of a "value chain" in which subassemblies of information are passed from one agent to another, each one "adding value," to construct the final product requested by the end user.

Is Semantic Web another attempt of artificial intelligence?

Semantic description of capabilities of devices can be used in home automation in order for them to function with least possible human assistance. For example when the door bell rings the sound of TV will go down, so you can hear the door bell.

So far, what is made is developing a standard for describing functional capabilities of devices (such as screen sizes) and user preferences, called Composite Capability/Preference Profile (CC/PP). Initially it will let cell phones and other nonstandard Web clients describe their characteristics so that Web content can be tailored for them on the fly.

If properly designed, the Semantic Web can assist the evolution of human knowledge as a whole. An essential process is the joining together of subcultures when a wider common language is needed

Acknowledgements

The authors would like to thank following people for their contribution to this book:

Ivan Marković, Toskov Ivan, Goran Anucojić, Miroslav Radaković, Gavro Nikezić, Claudia Niederee, Peter Fankhauser and Martin Leissler.
References and Literature

Nikezic, G., Content-oriented Image Search,

SSGRR-2004w, L’Aquilla, Itally, January 2004.

Web Ontology Language (OWL) Abstract Syntax and Semantics
W3C Working Draft, November 2002
http://www.w3.org/TR/2002/WD-owl-semantics-20021108

Resource Description Framework (RDF) Model and Syntax Specification
W3C Proposed Recommendation, January 1999
http://www.w3.org/TR/PR-rdf-syntax/

RDF/XML Syntax Specification (Revised)
W3C Working Draft, November 2002
http://www.w3.org/TR/2002/WD-rdf-syntax-grammar-20021108

RDF Semantics W3C Working Draft, November 2002
http://www.w3.org/TR/2002/WD-rdf-mt-20021112/

Resource Description Framework (RDF): Concepts and Abstract Syntax
W3C Working Draft, November 2002
http://www.w3.org/TR/2002/WD-rdf-concepts-20021108/

RDF Vocabulary Description Language 1.0: RDF Schema by W3C http://www.w3.org/TR/rdf-schema/

Semantic Web Road map by Tim Berners-Lee
http://www.w3.org/DesignIssues/Semantic.html

The Semantic Web by Tim Berners-Lee
http://www.w3.org/2002/Talks/04-sweb/Overview.html

Using W3C XML Schema by Eric van der Vlist

http://www.xml.com/pub/a/2000/11/29/schemas/part1.html

Querying XML Documents by Paul Cotton and Jonathan Robie
http://www.w3.org/2002/01/xquery-unicode.pdf

Primer: Getting into RDF & Semantic Web using N3 by W3C
http://www.w3.org/2000/10/swap/Primer

Agents and the Semantic Web by James Hendler http://dlib.computer.org/ex/books/ex2001/pdf/x2030.pdf

The Future of the Semantic Web by Christian Ohlms
http://www.aifb.uni-karlsruhe.de/AIK/veranstaltungen/aik9/presentations/ slides/ 020419FutureSemanticWeb.pdf

Semantic Web by Ivana Vujovic, Erich Neuhold, Peter Fankhauser, Claudia Niederee, and Veljko Milutinovic
http://galeb.etf.bg.ac.yu/~vm/tutorial/tutorial.html

VRML97 Specification

http://www.vrml.org/ Specifications/VRML97/

� The main problem with digitalization is that you can easily acquire raw 3D model (using specialized 3D scanners) but as a result you get only contours of the object. Afterwards you have to dress the "naked" object with textures and skins (which can be a tricky part).

� Pieter Bruegel the Elder (byname Peasant Bruegel, also spelled Brueghel or Breughel), the greatest Flemish painter of the 16th century

_1129929300

_1129985081

_1128861727.vsd
P8�

P8�

P3�

P5�

P8�

P4�

P5�

P3�

P8�

P6�

P4�

P5�

P3�

P8�

The first column�

The last column�

The last element in the last row�

The last row�

The rest of the matrix�

_1129914893.unknown

_1115027713.vsd
Load parameters, input and output directory�

Open the picture�

Create database objects, prepare them �and put in XML file and database�

Create sorted array of objects�

Merge objects into bigger objects�

Create objects�

Determine histogram�

Put the picture into the reduced matrix�

Determine the filter �

