
Design of the Scheduler for the High-Capacity
Non-Blocking Packet Switch

Miloš Petrović�, Aleksandra Smiljanić���
�Belgrade University, Belgrade, Serbia and Montenegro

�Stony Brook University, New York, USA
pmilos@ieee.org, aleks@ieee.org

Abstract— The sequential greedy scheduling (SGS) is a scalable
maximal matching algorithm that provides non-blocking in a
packet switch with input buffers and a cross-bar. In this paper,
we propose the design of the SGS scheduler, and present its
FPGA implementation. We examine different design options and
measure these implementations in terms of their scalability and
speed. It will be shown that multiple input modules of a terabit
packet switch can be implemented on one low-cost FPGA device
and that the processing can be performed within desired time
slot duration.

I. INTRODUCTION

The fast growth of bandwidth demand on the Internet has
led to a need for high-capacity packet switches and routers,
with large number of ports and high port speeds. Switches
with input buffers are the most scalable single-stage switches.
In this architecture, packets are stored at the switch inputs.
Based on the information about the outstanding packets, the
scheduler determines the cross-bar configuration in each time
slot, i.e. the input-output pairs that should be connected. When
the number of ports increases, the allocation of outputs to
inputs in these switches becomes computationally intensive
[1]-[5].

It has been recognized that maximal matching algorithms
provide non-blocking while requiring significantly lower com-
puting complexity compared to maximum matching algorithms
[1], [6]-[9]. Sequential Greedy Scheduling (SGS) [1], [6] is
a maximal matching algorithm that provides non-blocking
through a cross-bar with the speedup of two, and consequently
provides delay guarantees to the sensitive applications, as well
as flexible admission control.

The SGS algorithm can be implemented using pipeline
technique, and involves a scheduler with simple structure.
The scheduler has � input modules and each of the modules
communicates only with adjacent input modules, where � is
the number of switch ports. The SGS algorithm is performed
in � steps. In each step, one of the inputs chooses one of the
outputs for which it has packets to send, and which was not
assigned in the previous steps. Then, this input module updates
the set of available outputs and forwards it to the next input
module. Using pipeline technique, the schedule is calculated
during multiple time slots, and in each time slot the central
controller calculates in parallel schedules for N future time
slots. So, each input port is given more time to choose an
output. The advantage of this approach is that an input can
have significantly longer time to perform the output selection.

The scheduler should perform a selection so that overall
pipeline delay is negligible part of the packet delay. The
packet delay depends on the cell duration and the granularity
of bandwidth reservations. It is equal to the policing interval
(frame) in unicast switches with input buffers controlled by
the SGS [1], [6]. Policing interval equals � � �� where � is
the number of cells per policing interval, and � � is the cell
duration. The minimum bandwidth that can be allocated to
some input-output pair is one cell per policing interval. This
corresponds to the rate granularity of � � ��� , where � is
the port bit-rate. The granularity should be sufficiently low so
that not much bandwidth is wasted when many ports exchange
small amounts of traffic. In the worst case, one port exchanges
negligible traffic with � � � out of � ports, and these flows
are assigned one cell per policing interval. The total bandwidth
wasted is �� � �� �� � �� � �� ���� . The wasted portion
of port bit-rate is negligible if �� � �� � ��� �� �� i.e.
if � 		 � (or � � ���). If �� denotes the time required
for the output selection, then the pipeline delay is ���. The
pipeline delay is negligible if ��� �� ���, which holds
when �� � �� if we assume the high worst case efficiency,
i.e. � �� � . So, when the pipeline technique is introduced, a
processing time of each input is relaxed � times (from ����
to ��) without sacrificing the performance.

The packet delay significantly increases in multicast pack-
et switches with input buffers. Only one currently known
practical algorithm that provides a non-blocking multicast
switch with input buffers utilizes packet forwarding. Namely,
a multicast packet is transmitted in each policing interval only
to the limited number of destination outputs which forward the
packet to the limited number of remaining destination outputs
in the following policing interval [10]. In this case, the delay
is multiplied by ����� . In order to keep the delay acceptable
for most sensitive applications in high-capacity switches, the
cell duration should be lower than 100ns [10].

In this paper, we propose the design of a scheduler that is
based on the SGS algorithm, implement the proposed design,
and examine the performance of the implemented design. The
scheduler comprises the linked list memory, the queue man-
ager and the output selector. These particular scheduler com-
ponents will be first described. Then, we present two design
options for the SGS scheduler and discuss their performance.
These designs are implemented using field programmable
gate arrays (FPGA) of Altera Cyclone family. Altera Cyclone

Fig. 1. The internal architecture of an input port �

family of FPGAs is a low-cost family, which maintains high
performance [11]. Considered designs differ in terms of the
placement of the controller elements, the processing order,
and the speed of input/output registers. The number of input
modules that can fit one FPGA device for various switch sizes
is examined. Also, the output selection time �� is calculated
for various switch sizes and design parameters.

II. SGS CONTROLLER DESIGN

When a packet arrives to the switch, its IP destination
address is read, the switch output to which the packet should
be sent is determined, and the packet is divided into smaller
fixed length cells and stored into the appropriate virtual output
queue (VOQ). In each input buffer, there are � VOQs which
comprise cells bound for particular outputs. The internal
architecture of the input port is given in Fig. 1. The input
port comprises several components: the network processor
(which processes the packets and determines their destinations
from the headers, i.e. the output ports of the switch to which
the packets should be forwarded, and divides the packets
into cells), the data memory (which stores the incoming
packets/cells until they are scheduled and sent through the
switching fabric), the linked list memory (which stores the
data memory addresses of cells in VOQs), the queue manager
(which performs operations on virtual queues), and the output
selector (which calculates the schedule for the incoming cells
and stores this information in the output memory until the
cells are read). We have implemented the input module com-
prising queue manager, the linked list memory and the output
selector on Altera Cyclone EP1C20F400C6 FPGA, and these
components will be presented in more details in the following
subsections. Multiple input modules can be placed on a single
FPGA device.

The EP1C20F400C6 device that we used for the implemen-
tation consists of 20060 logic elements (LEs) grouped into
logic array blocks (LABs), 64 M4K memory blocks containing
4608 memory bits each (294912 bits total), 301 IOs on the
periphery, two PLLs, and some configuration logic connected
through a programmable routing fabric [11]. Cyclone logic
element comprises a four input look-up table (LUT), a register,
and dedicated arithmetic circuitry. It can operate in three

different modes simultaneously. LUT and register can operate
in parallel, LUT can drive the register input, and register
can drive one of LUT inputs. M4K memory blocks can be
organized to have widths from 1 to 36 bits, and operate in
five different modes: single-port memory, simple dual-port
memory, true dual-port memory, embedded shift register and
ROM. M4K memory block has a maximum clock frequency of
200 MHz, while the maximum EP1C20F400C6 device clock
frequency is 400 MHz. Groups of 10 LEs (one LAB) share
control signals and a local routing structure. Varying packing
levels of effort can be specified in Quartus II software, where
the packing level determines the trade-off between the speed
of the design and the area utilization of the device.

A. Linked List Memory

It has been shown that switches with input buffers expe-
rience a head-of-line (HOL) blocking, which decreases the
throughput of the switch [12]. This problem can be overcome
by using virtual output queues (VOQs) [13]. Cells in data
memory that are bound for the same destination form a VOQ.
There are � VOQs, corresponding to � outputs. Linked list
memory (referred to as VQs & EQ lists in Fig. 1) stores the
addresses of cells in different VOQs, and addresses of empty
locations. Each location in the linked list memory contains
the address of the next location in the empty queue linked
list (EQL) or the virtual queue linked list (VQL) to which the
location belongs. The linked list memory’s size is defined by
the number of cells that can be stored in the data memory
of the switch. The data memory should be able to store the
number of cells equal to the frame length � . Thus, the linked
list memory has � locations.

We have implemented the linked list memory in the M4K
memory blocks of the Altera Cyclone FPGA. The memory
exchanges control and data signals with the queue manager
component (implemented on the same FPGA). M4K is set
to work as a simple dual port memory, which can perform
simultaneous read and write operations.

B. Queue Manager

Queue manager performs operations when the cell arrives
to the queue manager, when the cell is scheduled by the output
selector, and when the cell departs the switch. The queue
manager stores pointers to VQLs. There are three pointers
to each VQL, i.e. to the beginning of the VQL, the first
unscheduled packet in the VQL, and the end of the VQL.
Similarly, the EQL is managed with two pointers to the
beginning and the end of the EQL. These pointers are updated
each time one of the operations is performed. Queue manager
needs to carry out multiple operations in the same time slot,
and in general on different VQLs.

At the beginning, all memory locations belong to EQL, and
each location contains the address of the next location in the
memory (except the last that points to NULL). The memory
location is removed from the beginning of the EQL to the
end of the VQL of some output, when the cell bound for
that output arrives to the switch. The cell is stored to the

Fig. 2. The output selector structure

address from this memory location. Similarly, when the cell
departs from the switch, the memory location at the beginning
of the corresponding VQL is added to the end of EQL. When
a cell is scheduled, the corresponding VQL is updated. Queue
manager obtains the scheduled cell from the output selector.
If the pointer to the first unscheduled cell from the same VQL
points to the last cell in the VQL, the pointer is set to NULL.
Else, the pointer to the first unscheduled cell is set to point to
the next element in that VQL.

The queue manager was implemented in VHDL, and can
be scaled easily for different switch sizes.

C. Output Selector

The output selector schedules a cell of the associated input
module by selecting the first available output for which the
given input has a cell to send from the set of requested outputs.
This way, the scheduling procedure is performed quickly but
not fair, because the earlier output ports are chosen first. The
fairness can be provided by rotating priorities in each frame.

The structure of the output selector is shown in Fig. 2.

bits contain the information about cells of a particular input
that participate in the selection process.
� bit is set to ’1’
only if the input has unscheduled cells for the �-th output port
and the �-th output port was not selected by previous input
ports. The number of
 bits corresponds to the number of
output ports. As a result of the scheduling process, � bits
contain the information about the scheduled output port. Only
one � bit can be set to ’1’ in one time slot, i.e. �� is set to
’1’ if the �-th output port is chosen by the given input. The
information about the remaining output ports is forwarded to
the next input port in the chain. The bit is the enable signal
for the output selector, and its outputs are valid only when the
 bit is set to ’1’. The � bit is set to ’1’ only if there is at
least one of the
 bits set to ’1’. Otherwise, if there are no
cells that are to be scheduled, this bit equals ’0’. The and
� bits enable building of larger structures.

The output selector is implemented recursively. The basic
output selector structure for the switch with two ports is shown
in Fig. 2a. In the 2�2 output selector, �� � � if
� � �, and
�� � � if
� � � and
� � �. The output selector for

Fig. 3. The coder structure

the switch with 	� output ports can be constructed recursively
using the basic structure, as shown in Fig. 2b. The output
selector structure for 	� output ports consists of two output
selectors for � ports, and one basic output selector for two
ports. Output selectors for �	�� � �	�� switches are built by
dividing a set of 	�
 bits into two subsets of � bits, and each
subset is forwarded to a smaller output selector for � output
ports. If any cell is scheduled in one of the subsets, then the
� bit in the corresponding structure is set to ’1’. The third 2-
port output selector determines which �-port structure will be
selected and sets the corresponding � bit to ’1’, which serves
as an enable signal for the selected �-port output selector.

The output � bits of the output selector are forwarded to the
coder, which structure is given in Fig. 3. The coder determines
the position of a logical one in the vector with one-hot coding,
and thus the number of the VOQ which has been scheduled
for the observed time slot. When �� � �, the coder returns �
coded binary. It forwards the scheduled VOQ number to the
queue manager. The coder is also implemented recursively.
The simple structure of a 4-to-3 coder is given in Fig. 3a. The
output � bits represent the VOQ number, where � � ��� for
�� � �, � � ��� for �� � �, � � ��� for �� � �, and
� � ��� for �� � �. The larger structure of a 2�-to-��
��
coder can be obtained recursively (where � � �����
 �) by
using three �-to-� coders, as shown in Fig. 3b. First � bits are
connected to the first coder, and second � bits are connected
to the second coder. If the selected output is among the first
� outputs the resulting coder has the same outputs as the first
coder. Otherwise, if the selected output is among the second �
outputs, the resulting coder has the same outputs as the second
coder plus 	�. So, the first �� � bits of the resulting coder
output � are equal to either outputs of the first or the second
coder, when the selected output is among first or second �
outputs. The third coder determines if the selected output is
among the first ��� outputs or second �
� outputs, and sets
�� to 0 in the first case, or to 1 in the second case. Finally,
the last bit �� equals the last output of the second coder.

Both the output selector and the coder use the minimum
number of logic circuits and produce the minimum delay. The
correct functioning of both the output selector and the coder

can be verified by mathematical induction.
The output selector for the input � in time slot � calculates

the schedule and reserves the output for the time slot �
�

��� (the first input port for the time slot �
�
	, the second
for the time slot �
�
�, etc.) Therefore, the numbers of the
scheduled VOQs need to be stored in the output memory until
the time slot when they need to be read by the queue manager.
The output memory uses M4K memory blocks functioning as
an embedded shift register. The additional delay of three time
slots is introduced (since the minimum tap distance of the shift
register is three), but the implementation is more efficient and
enables lower minimum time slot values, because the output
memory reserves no LEs, whose increase in number decreases
the speed of the switch.

III. IMPLEMENTATION OPTIONS

We implemented two different design options of the sched-
uler that implements the SGS algorithm, and examined their
performance. In any case, the queue manager module must
perform multiple operations within one time slot. The number
of cycles in which these operations are performed is at least
three, because three read and write operations need to be
performed on the linked list memory. Pointers to beginnings,
unscheduled cells and endings of VQLs may be stored either in
registers (LEs) or memory blocks of the Altera FPGA. Finally,
the speed at which input data are read to the input registers and
output data are read from the output registers may be increased
in order to increase the chip throughput and consequently the
number of input modules on a single FPGA device.

Both implementation options have been verified by simu-
lation, which includes accurate routing delays between LEs,
pins and M4K blocks.

A. Case A

The state machine for the queue manager operation com-
prises four states: swait, write, schedule, and read. The state
transitions are unconditional. The queue manager performs
each of the operations in its corresponding state. In one
additional state (swait) no pointer updates are performed.
However, this additional time slot is needed to ensure the
correct functioning of the controller, since the M4K memory
inherently inserts one additional cycle between the address
setup cycle, and the cycle in which the data is read. Therefore,
the number of cycles per time slot is four.

The pointers to VQLs are implemented using LEs of the
Altera Cyclone. For smaller designs, accessing pointers imple-
mented in registers may require the shorter time than accessing
pointers in memory. However, the number of LEs of the FPGA
may limit the number of input modules implemented on a
single chip.

B. Case B

The state machine for the queue manager operation has three
states, and the state transitions are unconditional. Operations
on VQLs are distributed over these three cycles (states) so
that the fourth state required in case A is avoided. Also, the

timing of schedule and read operations is defined by the output
selector and the output memory. The output selector is allowed
two cycles to choose an output, because the vector containing
the scheduled cell’s VOQ number and the vector with the
requested outputs are updated in the same cycle.

To increase the scalability of the queue manager, the point-
ers have been implemented in the M4K blocks of the Cyclone
FPGA. Since the M4K memory read operation requires one
additional cycle between the address setup cycle and the cycle
in which the memory outputs are read, we set the pointer
memory to work with twice the speed of the linked list
memory. Separate state machine with six states regulates the
pointer operations. This way, the timing of pointer updates
does not affect the timing of the linked list updates. Pointer
updates start at the predefined times, and consist of writing to
and reading from pointer memories. For example, in the first
cycle the address of the pointer to the beginning of EQL is
written to the pointer to the end of the VQL of an arriving
cell, in the second cycle the same address is written to the
pointer to the beginning of the VQL of the arriving cell if the
VQL was empty before the arrival, etc.

Finally, to increase the number of modules which can fit the
FPGA, the pins’ speed is increased two times. Input control
bits (which denote available outputs) are read from pins to
the input registers at the speed which is two times higher
than the speed of the case A. Namely, the first half of the
input bits are read at falling and the second part at the rising
edge of the clock with the time slot period. The first half
of the output control bits (which denote remaining available
outputs) is forwarded as soon as they are calculated, and the
second half is read at the falling edge of this clock. The data
memory addresses to be written to and read from, which are
exchanged between network processor and the implemented
controller, are similarly sped up. This way, the number of pins
required to ensure the given throughput of control information
is decreased around two times.

IV. THE PERFORMANCE ANALYSIS

In this section we will discuss the performance of two
implementation options presented in the previous section.
The performance will be measured in terms of the design
scalability, i.e. the number of input modules that can fit one
FPGA device. The maximum number of input modules that
can fit one device may be limited by different factors: the
number of available LEs, the number of memory blocks, and
the number of pins. Second important performance measure
that will be examined is the speed of the design, i.e. the
minimum achievable output selection time, ��.

A. Case A

In the presented design, the queue manager performs oper-
ations in four cycles of a time slot and the pointers to VQLs
are implemented using the LEs.

Tables I-III present the FPGA resource utilization and tim-
ing characteristics for different number of input ports � , and
for different number of input modules �� which could have

been fit onto a single device. The minimum output selection
time includes the time needed for processing the pointers in
the queue manager, and can be calculated from the maximum
clock frequency as ���� � ����	
 . The tables also show
in the column ”lim” which factor limits the number of input
modules that fit one FPGA device: the number of LEs, the
number of memory blocks, or the pin number. The number of
pins used by the design can be calculated as:

�������� � � �	������ �
 �����
 ����
 	�
 � (1)

because �����
 � pins per module are used for incoming
cell’s VOQ numbers, 	������ � pins per module for addresses
to which network processor stores and reads cells from, 2�
pins for control bits, and three pins for two clocks and reset
signal. The number of input modules is limited by memory to
32 since there are 64 M4K blocks, and every input module uses
at least two M4K blocks (one for linked list memory and one
for output memory). This number can further decrease, when
some memories span multiple M4K blocks. The number of
M4K blocks required for the link list memory and the output
memory can be calculated as:

������� � � �� ������ ������
 � (2)

since the link list memory has � ����� locations and the
output memory in none of the observed cases reserves
more than one M4K block. The linked list memory reserves
�� ������ ������ M4K blocks, since the Quartus software
for Altera FPGA devices limits the use of M4K block to 4096
bits.

TABLE I

RESOURCE UTILIZATION AND TIMING CHARACTERISTICS,� � �

� �� �� �� ��	
 ��� ��� ����
[Kbits] [MHz] [ns]

16 16 12901 3.3 243 / 106 37.7
32 10 17354 5.5 247 LE 96 42
64 5 17255 6.5 236 LE 83 48.4
128 1 7798 3 283 Pins 72 55.6

Table I contains the FPGA resource utilization and timing
characteristics when the frame length is minimal. It can be
seen from Table I that the speed of the FPGA design decreases
as the number of ports increases (e.g. the minimum time slot
rises from 37.7 ns for � � �� and �� � ��, to 55.6 ns
for � � �	� and �� � �). For � � �	�, the maximum
clock frequency is limited to 72 MHz. This clock frequency
corresponds to the faster clock that feeds the queue manager.
Therefore, the minimum output selection time is limited to
55.6 ns.

To obtain a rate granularity for high efficiency, the frame
length should be at least ten times the number of ports, as
we pointed out before. Tables II and III contain the FPGA
resource utilization, timing characteristic and limiting factors
when the frame size is eight and sixteen times greater than
the number of ports, respectively. It can be observed from
Table II and Table III that the maximum clock frequency of
the design somewhat decreases with the increase of the frame

TABLE II

RESOURCE UTILIZATION AND TIMING CHARACTERISTICS,� � ��

� �� �� �� ��	
 ��� ��� ����
[Kbits] [MHz] [ns]

16 13 13065 12.3 282 Pins 103 38.9
32 8 16092 17.8 243 LE 91 43.8
64 4 15809 20 231 LE 79 50.5
128 1 9698 11.2 287 Pins 70 56.9

TABLE III

RESOURCE UTILIZATION AND TIMING CHARACTERISTICS,� � ���

� �� �� �� ��	
 ��� ��� ����
[Kbits] [MHz] [ns]

16 12 14609 25.2 287 Pins 104 38.6
32 7 16280 33.5 235 LE 91 43.9
64 3 14421 32 212 LE 81.3 49.2
128 1 9733 23.5 289 Pins 68 58.8

length because it causes the increase of the number of required
LEs. However, the minimum output selection time does not
increase significantly with the frame length � , as expected,
and will remain well below 100ns for the finest granularities
as desired.

B. Case B

In the presented design, the queue manager performs oper-
ations in six cycles of a time slot, the pointers to VQLs are
placed in the FPGA memory, and the pins are two times faster
than in case A.

In this case, the minimum output selection time can be
calculated from the maximum clock frequency as ���� �
����	
 , since the time slot comprises six cycles of the faster
clock that manages pointer updates. The upper limit of the
number of modules which can fit the FPGA may be limited
by the number of pins, the number of M4K blocks and the
number of LEs on the FPGA. When the pins are sped up the
number of pins can be calculated as:

�������� � � �	������� ��	�
 �����
����
�
�� (3)

because the number of pins for addresses is halved to
	���������	� pins per module, for control bits to � pins,
and one additional pin for clock is used.

The number of input modules is limited by memory to 12
since there are 64 M4K blocks, and every input module uses
at least five M4K blocks (three memories for pointers, one for
linked list memory and one for output memory). This number
further decreases, when the linked list memory spans multiple
M4K blocks, as described by equation:

������� � � �� ������ ������
 � (4)

because in the cases observed no pointer memories nor output
memories reserve more than one M4K block.

The resource utilization, timing characteristics and limiting
factors for the minimal frame length are given in Table IV, and
for � � �� and � � ��� , in tables V and VI respectively.
It can be observed from the tables IV-VI that the minimum
time slot duration slowly increases with the switch size, and

with the frame length as before. For � � �� and � � ��� ,
the maximum number of modules which can fit the FPGA is
�� � �	, and this number decreases to �� � � for � �
�	� and � � ��� . Speed of the pins that carry control data
has been increased twice (for all the cases but the � � ��),
to increase the number of modules placed on the chip. For
� � ��, the increase in speed of the pins was not necessary
since the upper limit was defined by the number of available
memory blocks. The minimum time slot is slightly longer and
the number of modules which can fit the FPGA in this case is
smaller than in the case A for smaller switch sizes. However, as
the size of the controlled packet switch increases, the minimum
time slot duration becomes shorter, and the number of input
modules that can fit the FPGA in case B is significantly larger
than in case A. That is, in case B nine modules can fit one
chip for � � ��� and � � ��, or six modules for � � �	�;
while in case A three modules fit the chip for � � �� or one
module for � � �	�. The minimum time slot is limited to
��=56.6ns in case B, which is still well below 100ns.

TABLE IV

RESOURCE UTILIZATION AND TIMING CHARACTERISTICS,� � �

� �� �� �� ��	
 ��� ��� ����
[Kbits] [MHz] [ns]

16 12 4643 7.6 216 Mem 130 46.1
32 12 6829 18.4 180 Mem 124 48.1
64 12 10489 42.9 248 Mem 110 54.4
128 10 14421 81.9 292 Pins 107 55.7

TABLE V

RESOURCE UTILIZATION AND TIMING CHARACTERISTICS,� � ��

� �� �� �� ��	
 ��� ��� ����
[Kbits] [MHz] [ns]

16 12 5211 19.4 264 Mem 125 48
32 12 7533 44.9 204 Mem 117 51.1
64 12 11172 101.6 272 Mem 109 55
128 9 13821 170 294 Mem 106 56.6

TABLE VI

RESOURCE UTILIZATION AND TIMING CHARACTERISTICS,� � ���

� �� �� �� ��	
 ��� ��� ����
[Kbits] [MHz] [ns]

16 12 5635 34.4 288 Mem 124 48.3
32 12 7912 77.9 228 Mem 115 52.2
64 9 8699 130.4 221 Mem 112 53.5
128 6 9375 191.9 252 Mem 109 54.9

In Table VII we calculate the maximum number of input
modules that would fit one FPGA device, using formulas (1),
(3), and (4). The cases with (ps) and without pins’ speedup
(nops) are considered. In case A, the number of LEs is main
scalability limitation. In case B, the scalability significantly
improves when the pins are sped up two times, and the number
of M4K blocks becomes a limitation shown in column ”mem”.

V. CONCLUSION

In this paper we proposed the design of the scheduler based
on the SGS algorithm, and presented its implementation. It

TABLE VII

MAXIMUM NUMBER OF INPUT MODULES �� PER CHIP

� � � � � �� � � ���

� ps nops mem ps nops mem ps nops mem
16 16 16 12 16 13 12 16 12 12
32 22 12 12 18 10 12 16 9 12
64 15 8 12 13 6 12 13 6 9
128 10 1 12 9 1 9 8 1 7

was shown that placing pointers to virtual queue lists into the
FPGA memory and speeding the pins significantly improves
the design scalability, and the processing speeds in the larger
switches. The preferred design option is highly scalable: up
to 10 input control modules of an 128�128 switch can be
placed on a single low-cost FPGA device. The port bit rate
is limited by the network processor capability, and available
network processors handle the port speed of 10Gb/s. In the
case of ports’ bit-rate of 10Gb/s, the total capacity of the
controlled switch would be 128�10Gb/s=1.28Tb/s. The output
selection time remains below 60 ns in discussed high-capacity
packet switches. Consequently, the implemented scheduler
provides delay guarantees for sensitive applications, and the
fine granularity of reservations.

Acknowledgments We thank Miloš Blagojević for his help
with this paper.

REFERENCES

[1] A. Smiljanić, ”Flexible bandwidth allocation in terabit packet switches,”
Proceedings of IEEE Conference on High Performance Switching and
Routing (Best Paper Award), June 2000, pp. 233-241.

[2] H. J. Chao, ”Saturn: A terabit packet switch using dual round-robin, ”
IEEE Communications Magazine, vol. 38, no.12, December 2000, pp.
78-84.

[3] E. Oki, R. Rojas-Cessa, H. J. Chao, ”A pipeline-based approach for
maximal-sized matching scheduling in input-buffered switches,” IEEE
Communication Letters, vol. 5, no. 6, June 2001, pp. 263-265.

[4] N. McKeown, ”The iSLIP scheduling algorithm for input-queued switch-
es,” IEEE/ACM Transcations on Networking, vol. 7, April 1999, pp.
188-200.

[5] Y. Tamir, and H. C. Chi, “Symmetric crossbar arbiters for VLSI com-
munication switches,” IEEE Transactions on Parallel and Distributed
Systems, vol. 4, no. 1, 1993, pp. 13-27.

[6] A. Smiljanić, ”Flexible bandwidth allocation in high-capacity packet
switches,”” IEEE/ACM Transactions on Networking, April 2002, pp.
287-293.

[7] A. Smiljanić, “Bandwidth Reservations by Maximal Matching Algo-
rithms,” IEEE Communication Letters, March 2004, pp. 177-179.

[8] G. Dai, and B. Prabhakar, “The throughput of data switches with and
without speedup,” IEEE INFOCOM 2000, pp. 556-564.

[9] E. Leonardi, M. Mellia, A. Marsan, and F. Neri, “Stability of maximal
matching scheduling in input-queued cell switches,” Proceedings of
IEEE International Conference on Communication 2000, pp. 1758-1763.

[10] A. Smiljanić, “Scheduling of multicast traffic in high-capacity packet
switches,” IEEE Communication Magazine (Best Paper Award in IE-
ICE/IEEE HPSR 2002), November 2002, pp. 72-77.

[11] P. Leventis, et al., ”Cyclone�� : A low-cost, high-performance FPGA,”
Proceedings of the IEEE CICC 2003, September 2003, pp. 49-52.

[12] M. Karol, M. Hluchyj, and S. Morgan, ”Input versus output queueing on
a space division switch,” IEEE Trans. Communications, 35(12)(1987),
pp. 1347-1356.

[13] Y. Tamir, G. Frazier, ”High Performance multi-queue buffers for VLSI
communication switches,” Proc. of 15th Ann. Symp. on Comp. Arch.,
June 1988, pp. 343-354.

